2,852 research outputs found
Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources
Low mass star-forming regions are more complex than the simple spherically
symmetric approximation that is often assumed. We apply a more realistic
infall/outflow physical model to molecular/continuum observations of three late
Class 0 protostellar sources with the aims of (a) proving the applicability of
a single physical model for all three sources, and (b) deriving physical
parameters for the molecular gas component in each of the sources.
We have observed several molecular species in multiple rotational
transitions. The observed line profiles were modelled in the context of a
dynamical model which incorporates infall and bipolar outflows, using a three
dimensional radiative transfer code. This results in constraints on the
physical parameters and chemical abundances in each source.
Self-consistent fits to each source are obtained. We constrain the
characteristics of the molecular gas in the envelopes as well as in the
molecular outflows. We find that the molecular gas abundances in the infalling
envelope are reduced, presumably due to freeze-out, whilst the abundances in
the molecular outflows are enhanced, presumably due to dynamical activity.
Despite the fact that the line profiles show significant source-to-source
variation, which primarily derives from variations in the outflow viewing
angle, the physical parameters of the gas are found to be similar in each core.Comment: MNRAS 12 pages, 16 figure
Analysis of circuit conditions for optimum intermodulation and gain in bipolar cascomp amplifiers with non-ideal error correction
The cascoded-compensation or ‘Cascomp’ amplifier offers excellent distortion reduction and thermal distortion rejection, but has not seen widespread use because of a limited gain and increased complexity compared with other topologies. The original theory showed that with the addition of an ideal error amplifier the circuit will completely compensate distortion for suitably chosen degeneration and bias values. This research presents a new, rigorous mathematical proof for conditions of compensation. The authors further develop the proof to include the non-idealities of the error amplifier. It is shown that there exists a second bias point, not exposed by the original analysis that offers improved gain while maintaining distortion cancellation. By reducing the error amplifier degeneration resistance, one can increase a Cascomp circuit's overall gain by several dB while maintaining theoretically perfect distortion compensation. A robust bias point is proposed, which takes the advantage of this new theory by optimising circuit values resulting in a comparatively broader and deeper third-order distortion null. The proposed theory is confirmed with simulation and measurement that show agreement within the bounds of process and component error limits
Reduction of computer usage costs in predicting unsteady aerodynamic loadings caused by control surface motions: Computer program description
A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated
COMSAT Laboratories' on-board baseband switch development
Work performed at COMSAT Laboratories to develop a prototype on-board baseband switch is summarized. The switch design is modular to accommodate different service types, and the architecture features a high-speed optical ring operating at 1 Gbit/s to route input (up-link) channels to output (down-link) channels. The switch is inherently a packet switch, but can process either circuit-switched or packet-switched traffic. If the traffic arrives at the satellite in a circuit-switched mode, the input processor packetizes it and passes it on to the switch. The main advantage of the packet approach lies in its simplified control structure. Details of the switch architecture and design, and the status of its implementation, are presented
Advances in immunotherapy for melanoma
In recent years, the introduction and Federal Drug Administration approval of immune checkpoint inhibitor antibodies has dramatically improved the clinical outcomes for patients with advanced melanoma. These antagonist monoclonal antibodies are capable of unleashing dormant or exhausted antitumor immunity, which has led to durable complete and partial responses in a large number of patients. Ipilimumab targets the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) receptor. Nivolumab and pembrolizumab target programmed cell death protein 1 (PD-1) receptors and have proven to be superior to ipilimumab alone. The combination of ipilimumab and nivolumab has yielded higher response rates, greater tumor shrinkage, and longer progression-free survival than either monotherapy alone. As other promising immunotherapies for melanoma proceed through clinical trials, future goals include defining the role of immune checkpoint inhibitors as adjuvant therapy, identifying optimal combination strategies, and developing reliable predictive biomarkers to guide treatment selection for individual patients
Observation of HCN hyperfine line anomalies towards low- and high-mass star-forming cores
HCN is becoming a popular choice of molecule for studying star formation in
both low- and high-mass regions and for other astrophysical sources from comets
to high-redshift galaxies. However, a major and often overlooked difficulty
with HCN is that it can exhibit non-local thermodynamic equilibrium (non-LTE)
behaviour in its hyperfine line structure. Individual hyperfine lines can be
strongly boosted or suppressed. In low-mass star-forming cloud observations,
this could possibly lead to large errors in the calculation of opacity and
excitation temperature, while in massive star-forming clouds, where the
hyperfine lines are blended due to turbulent broadening, errors will arise in
infall measurements that are based on the separation of the peaks in a
self-absorbed profile. The underlying line shape cannot be known for certain if
hyperfine anomalies are present. We present a first observational investigation
of these anomalies across a range of conditions and transitions by carrying out
a survey of low-mass starless cores (in Taurus & Ophiuchus) and high-mass
protostellar objects (in the G333 giant molecular cloud) using hydrogen cyanide
(HCN) J=1-0 and J=3-2 emission lines. We quantify the degree of anomaly in
these two rotational levels by considering ratios of individual hyperfine lines
compared to LTE values. We find that all the cores observed show some degree of
anomaly while many of the lines are severely anomalous. We conclude that HCN
hyperfine anomalies are common in both lines in both low-mass and high-mass
protostellar objects, and we discuss the differing hypotheses for the
generation of the anomalies. In light of the results, we favour a line overlap
effect for the origins of the anomalies. We discuss the implications for the
use of HCN as a dynamical tracer and suggest in particular that the J=1-0,
F=0-1 hyperfine line should be avoided in quantitative calculations.Comment: 17 pages, 8 figure
CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483
CO isotopes are able to probe the different components in protostellar
clouds. These components, core, envelope and outflow have distinct physical
conditions and sometimes more than one component contributes to the observed
line profile. In this study we determine how CO isotope abundances are altered
by the physical conditions in the different components. We use a 3D molecular
line transport code to simulate the emission of four CO isotopomers, 12CO
J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483,
which contains a cold quiescent core, an infalling envelope and a clear
outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line
observations with the inclusion of freeze-out, a density profile and infall.
Our model profiles of 12CO and 13CO have a large linewidth due to a high
velocity jet. These profiles replicate the process of more abundant material
being susceptible to a jet. C18O and C17O do not display such a large linewidth
as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table
The Different Structures of the Two Classes of Starless Cores
We describe a model for the thermal and dynamical equilibrium of starless
cores that includes the radiative transfer of the gas and dust and simple CO
chemistry. The model shows that the structure and behavior of the cores is
significantly different depending on whether the central density is either
above or below about 10^5 cm-3. This density is significant as the critical
density for gas cooling by gas-dust collisions and also as the critical density
for dynamical stability, given the typical properties of the starless cores.
The starless cores thus divide into two classes that we refer to as thermally
super-critical and thermally sub-critical.This two-class distinction allows an
improved interpretation of the different observational data of starless cores
within a single model.Comment: ApJ in pres
Transport of Cytoplasmically Synthesized Proteins into the Mitochondria in a Cell Free System from Neurospora crassa
Synthesis and transport of mitochondrial proteins were followed in a cell-free homogenate of Neurospora crassa in which mitochondrial translation was inhibited. Proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction. The relative amounts of proteins which are transferred in vitro are comparable to those transferred in whole cells.
Cycloheximide and puromycin inhibit the synthesis of mitochondrial proteins but not their transfer into mitochondria.
The transfer of immunoprecipitable mitochondrial proteins was demonstrated for matrix proteins, carboxyatractyloside-binding protein and cytochrome c.
Import of proteins into mitochondria exhibits a degree of specificity. The transport mechanism differentiates between newly synthesized proteins and preexistent mitochondrial proteins, at least in the case of matrix proteins.
In the cell-free homogenate membrane-bound ribosomes are more active in the synthesis of mitochondrial proteins than are free ribosomes. The finished translation products appear to be released from the membrane-bound ribosomes into the cytosol rather than into the membrane vesicles.
The results suggest that the transport of cytoplasmically synthesized mitochondrial proteins is essentially independent of cytoplasmic translation; that cytoplasmically synthesized mitochondrial proteins exist in an extramitochondrial pool prior to import; that the site of this pool is the cytosol for at least some of the mitochondrial proteins; and that the precursors in the extramitochondrial pool differ in structure or conformation from the functional proteins in the mitochondria
Untangling the Biological Contributions to Soil Stability in Semiarid Shrublands
Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification
- …
