938 research outputs found

    Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?

    Full text link
    This letter is a critique of Barbero's constrained Hamiltonian formulation of General Relativity on which current work in Loop Quantum Gravity is based. While we do not dispute the correctness of Barbero's formulation of general relativity, we offer some criticisms of an aesthetic nature. We point out that unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection does not admit an interpretation as a space-time gauge field. We show that if one tries to interpret Barbero's real SO(3) connection as a space-time gauge field, the theory is not diffeomorphism invariant. We conclude that Barbero's formulation is not a gauge theory of gravity in the sense that Ashtekar's Hamiltonian formulation is. The advantages of Barbero's real connection formulation have been bought at the price of giving up the description of gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments, accepted for publication in Classical and Quantum Gravit

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Uplifting and Inflation with D3 Branes

    Get PDF
    Back-reaction effects can modify the dynamics of mobile D3 branes moving within type IIB vacua, in a way which has recently become calculable. We identify some of the ways these effects can alter inflationary scenarios, with the following three results: (1) By examining how the forces on the brane due to moduli-stabilizing interactions modify the angular motion of D3 branes moving in Klebanov-Strassler type throats, we show how previous slow-roll analyses can remain unchanged for some brane trajectories, while being modified for other trajectories. These forces cause the D3 brane to sink to the bottom of the throat except in a narrow region close to the D7 brane, and do not ameliorate the \eta-problem of slow roll inflation in these throats; (2) We argue that a recently-proposed back-reaction on the dilaton field can be used to provide an alternative way of uplifting these compactifications to Minkowski or De Sitter vacua, without the need for a supersymmetry-breaking anti-D3 brane; and (3) by including also the D-term forces which arise when supersymmetry-breaking fluxes are included on D7 branes we identify the 4D supergravity interactions which capture the dynamics of D3 motion in D3/D7 inflationary scenarios. The form of these potentials sheds some light on recent discussions of how symmetries constrain D term interactions in the low-energy theory.Comment: JHEP.cls, 35 pages, 3 .eps figure

    The Eurace@Unibi Model: An Agent-Based Macroeconomic Model for Economic Policy Analysis

    Get PDF
    Dawid H, Gemkow S, Harting P, van der Hoog S, Neugart M. The Eurace@Unibi Model: An Agent-Based Macroeconomic Model for Economic Policy Analysis. Working Papers in Economics and Management. Vol 05-2012. Bielefeld: Bielefeld University, Department of Business Administration and Economics; 2012.This document provides a description of the modeling assumptions and economic features of the Eurace@Unibi model. Furthermore, the document shows typical patterns of the output generated by this model and compares it to empirically observable stylized facts. The Eurace@Unibi model provides a representation of a closed macroeconomic model with spatial structure. The main objective is to provide a micro-founded macroeconomic model that can be used as a unified framework for policy analysis in different economic policy areas and for the examination of generic macroeconomic research questions. In spite of this general agenda the model has been constructed with certain specific research questions in mind and therefore certain parts of the model, e.g. the mechanisms driving technological change, have been worked out in more detail than others. The purpose of this document is to give an overview over the model itself and its features rather than discussing how insights into particular economic issues can be obtained using the Eurace@Unibi model. The model has been designed as a framework for economic analysis in various domains of economics. A number of economic issues have been examined using (prior versions of) the model (see Dawid et al. (2008), Dawid et al. (2009), Dawid et al. (2011a), Dawid and Harting (2011), van der Hoog and Deissenberg (2011), Cincotti et al. (2010)) and recent extensions of the model have substantially extended its applicability in various economic policy domains, however results of such policy analyses will be reported elsewhere. Whereas the overall modeling approach, the different modeling choices and the economic rationale behind these choices is discussed in some detail in this document, no detailed description of the implementation is given. Such a detailed documentation is provided in the accompanying document Dawid et al. (2011b)

    Inflating in a Better Racetrack

    Full text link
    We present a new version of our racetrack inflation scenario which, unlike our original proposal, is based on an explicit compactification of type IIB string theory: the Calabi-Yau manifold P^4_[1,1,1,6,9]. The axion-dilaton and all complex structure moduli are stabilized by fluxes. The remaining 2 Kahler moduli are stabilized by a nonperturbative superpotential, which has been explicitly computed. For this model we identify situations for which a linear combination of the axionic parts of the two Kahler moduli acts as an inflaton. As in our previous scenario, inflation begins at a saddle point of the scalar potential and proceeds as an eternal topological inflation. For a certain range of inflationary parameters, we obtain the COBE-normalized spectrum of metric perturbations and an inflationary scale of M = 3 x 10^{14} GeV. We discuss possible changes of parameters of our model and argue that anthropic considerations favor those parameters that lead to a nearly flat spectrum of inflationary perturbations, which in our case is characterized by the spectral index n_s = 0.95.Comment: 20 pages, 7 figures. Brief discussion on the non-gaussianity of this model, one more figure of the field trajectories added as well as other minor changes to the tex

    Ab Initio Estimates of the Size of the Observable Universe

    Full text link
    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and with a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.Comment: 10 pages, LaTe

    Worldscope meets Compustat: A Comparison of Financial Databases

    Full text link
    With this study we are the first to systematically compare today's two major counterparts as a source of accounting and financial data for researchers: Compustat North America by Standard & Poor's and Worldscope by Thomson Financial. This investigation is conducted for U.S. and partly Canadian data over an extensive period from 1985 to 2003. We examine more than 650 data items available in both databases and address the question of whether or not the decision for one or the other source may have an impact on the outcome of research projects. It is probably commonly assumed that this impact is minor, but it also leaves room to question certain results. We show that the use of both databases should lead to comparable results, but also find that if, e.g. a size bias, is not treated with care the quality of results may differ considerable. Furthermore after 1998 the number of firms covered by Worldscope exceeds the one covered by Compustat by about one fourth

    ASME 88-1CE-6, presented at the Energy-Source Technology Conference and Exhibition

    Get PDF
    Fig. 5 Velocity versus anguiar dispiacement (V8 engine) attained from the inertia value using the least squares method is consistently smaller than the reference data, and eventually leads to larger velocity estimation error than the average method Some precautions are needed when applying the least squares method to compute the engine inertia value. For engines operating at high speeds, the velocity related term in Eq. (1) could be very large compared with the other terms. This could result in some confusing situations. For instance, engines might decelerate over some portion of the engine operation cycle while the net external torque accelerating the engine is positive; or engines might accelerate while the net external torque is negative. These operation situations might make negative engine inertia value estimations possible, which is not feasible. In other cases, engines might have very small accelerations or decelerations while net external torque is moderate to large. For these cases, the calculation might lead to very large engine inertia values, which is not feasible either. The cases mentioned above are most likely to occur when engines operate at high speeds. Those erroneous data corresponding the situations above must be Altered out before applying the least squares method to the engine inertia value computation. The criterion used in this study to decide whether data should be used to calculate the engine inertia values is to check the quotient of the net external torque divided by the engine acceleration. This quotient should not be too large or too small relative to the average engine inertia value. Those data whose quotient are significantly away from the average engine inertia value are likely to fall in the situations mentioned above, and those data should not be used in the engine inertia value computation. V Conclusions The engine inertia values calculated by the least squares method guarantees minimum acceleration and velocity estimation errors for engine operating at constant average velocities. As for monotonically accelerating and decelerating engines, simulations in the study show that the engine model with an inertia calculated by the least squares method leads to smaller estimation errors in acceleration but larger estimation errors in velocity than the constant inertia engine model with an average inertia. It is important that the user knows the type of engine, its range of operation, and the type of loading in order to calculate an optimal engine inertia for the control purpose. This study has provided guidance in understanding the effects of engine performance variables and in calculating an appropriate estimate for the engine inertia. Acknowledgment

    A Priori Mixed Hadrons, Weak Radiative and Non-leptonic Decays of Hyperons

    Get PDF
    A priori mixings of eigenstates in physical states are quantum mechanical effects well known in several realms of physics. The possibility that such effects are also present in particle physics, in the form of flavor and parity mixings, is studied. Applications to weak radiative and non-leptonic decays of hyperons are discussed
    corecore