765 research outputs found
Advancing the understanding of adaptive capacity of social‐ecological systems to absorb climate extremes
Apolarity, Hessian and Macaulay polynomials
A result by Macaulay states that an Artinian graded Gorenstein ring R of
socle dimension one and socle degree b can be realized as the apolar ring of a
homogeneous polynomial f of degree b. If R is the Jacobian ring of a smooth
hypersurface g=0, then b is just equal to the degree of the Hessian polynomial
of g. In this paper we investigate the relationship between f and the Hessian
polynomial of g.Comment: 12 pages. Improved exposition, minor correction
Bayesian calibration of a soil organic carbon model using Δ<sup>14</sup>C measurements of soil organic carbon and heterotrophic respiration as joint constraints
Soils of temperate forests store significant amounts of organic matter and
are considered to be net sinks of atmospheric CO<sub>2</sub>. Soil organic carbon
(SOC) turnover has been studied using the Δ<sup>14</sup>C values of bulk SOC
or different SOC fractions as observational constraints in SOC models.
Further, the Δ<sup>14</sup>C values of CO<sub>2</sub> that evolved during the
incubation of soil and roots have been widely used together with
Δ<sup>14</sup>C of total soil respiration to partition soil respiration into
heterotrophic respiration (HR) and rhizosphere respiration. However, these
data have not been used as joint observational constraints to determine SOC
turnover times. Thus, we focus on (1) how different combinations of
observational constraints help to narrow estimates of turnover times and
other parameters of a simple two-pool model, the Introductory Carbon Balance
Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple
constraints approach allows the source/sink strength of the soil to be
determined while estimating turnover times at the same time. To this end ICBM
was adapted to model SOC and SO<sup>14</sup>C in parallel with
litterfall and the Δ<sup>14</sup>C of litterfall as driving variables. The
Δ<sup>14</sup>C of the atmosphere with its prominent bomb peak was used as a
proxy for the Δ<sup>14</sup>C of litterfall. Data from three spruce-dominated
temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and
Howland Tower site) were used to estimate the parameters of ICBM via Bayesian
calibration. Key findings are as follows: (1) the joint use of all four
observational constraints (SOC stock and its Δ<sup>14</sup>C, HR flux and its
Δ<sup>14</sup>C) helped to considerably narrow turnover times of the young
pool (primarily by Δ<sup>14</sup>C of HR) and the old pool (primarily by
Δ<sup>14</sup>C of SOC). Furthermore, the joint use of all observational
constraints made it possible to constrain the humification factor in ICBM,
which describes the fraction of the annual outflux from the young pool that
enters the old pool. The Bayesian parameter estimation yielded the following
turnover times (mean ± standard deviation) for SOC in the young pool:
Coulissenhieb II 1.1 ± 0.5 years, Solling D0 5.7 ± 0.8 years and
Howland Tower 0.8 ± 0.4 years. Turnover times for the old pool were
377 ± 61 years (Coulissenhieb II), 313 ± 66 years (Solling D0)
and 184 ± 42 years (Howland Tower), respectively. (2) At all three
sites the multiple constraints approach was not able to determine if the soil
has been losing or storing carbon. Nevertheless, the relaxed steady-state
assumption hardly introduced any additional uncertainty for the other
parameter estimates. Overall the results suggest that using Δ<sup>14</sup>C
data from more than one carbon pool or flux helps to better constrain SOC
models
Total Photoabsorption Cross Sections of A=6 Nuclei with Complete Final State Interaction
The total photoabsorption cross sections of 6He and 6Li are calculated
microscopically with full inclusion of the six-nucleon final state interaction
using semirealistic nucleon-nucleon potentials. The Lorentz Integral Transform
(LIT) method and the effective interaction approach for the hyperspherical
formalism are employed. While 6Li has a single broad giant resonance peak,
there are two well separated peaks for 6He corresponding to the breakup of the
neutron halo and the alpha core, respectively. The comparison with the few
available experimental data is discussed.Comment: LaTeX, 8 pages, 3 ps figure
Neutron-3H and Proton-3He Zero Energy Scattering
The Kohn variational principle and the (correlated) Hyperspherical Harmonics
technique are applied to study the n-3H and p-3He scattering at zero energy.
Predictions for the singlet and triplet scattering lengths are obtained for
non-relativistic nuclear Hamiltonians including two- and three-body potentials.
The calculated n-3H total cross section agrees well with the measured value,
while some small discrepancy is found for the coherent scattering length. For
the p-3He channel, the calculated scattering lengths are in reasonable
agreement with the values extrapolated from the measurements made above 1 MeV.Comment: 13 pages, REVTEX, 1 figur
Open Problems on Central Simple Algebras
We provide a survey of past research and a list of open problems regarding
central simple algebras and the Brauer group over a field, intended both for
experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered,
compared to v
Indications for the Nonexistence of Three-Neutron Resonances near the Physical Region
The pending question of the existence of three-neutron resonances near the
physical energy region is reconsidered. Finite rank neutron-neutron forces are
used in Faddeev equations, which are analytically continued into the unphysical
energy sheet below the positive real energy axis. The trajectories of the
three-neutron S-matrix poles in the states of total angular momenta and parity
J^\pi=1/2 +- and J^\pi= 3/2 +- are traced out as a function of artificial
enhancement factors of the neutron-neutron forces. The final positions of the
S-matrix poles removing the artificial factors are found in all cases to be far
away from the positive real energy axis, which provides a strong indication for
the nonexistence of nearby three-neutron resonances. The pole trajectories
close to the threshold E=0 are also predicted out of auxiliary generated
three-neutron bound state energies using the Pad\'e method and agree very well
with the directly calculated ones.Comment: 20 pages, 7 Postscript figures, fig.1 is corrected, uses relax.st
Searching for three-nucleon resonances
We search for three-neutron resonances which were predicted from pion double
charge exchange experiments on He-3. All partial waves up to J=5/2 are
nonresonant except the J=3/2^+ one, where we find a state at E=14 MeV energy
with 13 MeV width. The parameters of the mirror state in the three-proton
system are E=15 MeV and Gamma=14 MeV. The possible existence of an excited
state in the triton, which was predicted from a H(He-6,alpha) experiment, is
also discussed.Comment: LaTex with RevTe
Comment on ``Large-space shell-model calculations for light nuclei''
In a recent publication Zheng, Vary, and Barrett reproduced the negative
quadrupole moment of Li-6 and the low-lying positive-parity states of He-5 by
using a no-core shell model. In this Comment we question the meaning of these
results by pointing out that the model used is inadequate for the reproduction
of these properties.Comment: Latex with Revtex, 1 postscript figure in separate fil
- …
