5,808 research outputs found
Photonic bandgap plasmonic waveguides
A novel type of a plasmonic waveguide has been proposed featuring an "open"
design that is easy to manufacture, simple to excite and that offers a
convenient access to a plasmonic mode. Optical properties of photonic bandgap
(PBG) plasmonic waveguides are investigated experimentally by leakage radiation
microscopy and numerically using the finite element method confirming photonic
bandgap guidance in a broad spectral range. Propagation and localization
characteristics of a PBG plasmonic waveguide have been discussed as a function
of the wavelength of operation, waveguide core size and the number of ridges in
the periodic reflector for fundamental and higher order plasmonic modes of the
waveguide
Continuum Singularities of a Mean Field Theory of Collisions
Consider a complex energy for a -particle Hamiltonian and let
be any wave packet accounting for any channel flux. The time independent
mean field (TIMF) approximation of the inhomogeneous, linear equation
consists in replacing by a product or Slater
determinant of single particle states This results, under the
Schwinger variational principle, into self consistent TIMF equations
in single particle space. The method is a
generalization of the Hartree-Fock (HF) replacement of the -body homogeneous
linear equation by single particle HF diagonalizations
We show how, despite strong nonlinearities in this mean
field method, threshold singularities of the {\it inhomogeneous} TIMF equations
are linked to solutions of the {\it homogeneous} HF equations.Comment: 21 pages, 14 figure
Shell structure in neutron-rich Ca and Ni nuclei under semi-realistic mean fields
Shell structure in the neutron-rich Ca and Ni nuclei is investigated by the
spherical Hartree-Fock calculations with the semi-realistic interactions.
Specific ingredients of the effective interaction, particularly the tensor
force, often play a key role in the dependence of the neutron shell
structure. Such examples are found in N=32 and N=40; N=32 becomes magic or
submagic in Ca while its magicity is broken in Ni, and N=40 is
submagic (though not magic) in Ni but not in Ca. Comments are
given on the doubly magic nature of Ni. We point out that the loose
binding can lead to a submagic number N=58 in Ni, assisted by the weak
pair coupling.Comment: 14 pages including 5 figures, to appear in Physical Review C (Rapid
Communication
Self-Consistent Pushing and Cranking Corrections to the Meson Fields of the Chiral Quark-Loop Soliton
We study translational and spin-isospin symmetry restoration for the
two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we
consider a boosted and rotating hedgehog soliton. Corrected classical meson
fields are obtained by minimizing a corrected energy functional which has been
derived by semi-classical methods ('variation after projection'). We evaluate
corrected meson fields in the region 300 MeV \le M \le 600 MeV of constituent
quark masses M and compare them with the uncorrected fields. We study the
effect of the corrections on various expectation values of nuclear observables
such as the root-mean square radius, the axial-vector coupling constant,
magnetic moments and the delta-nucleon mass splitting.Comment: 19 pages, LaTeX, 7 postscript figures included using 'psfig.sty', to
appear in Int.J.Mod.Phys.
Nonlinear Performance of BAW Filters Including BST Capacitors
This paper evaluates the nonlinear effects occurring in a bulk acoustic wave (BAW) filter which includes barium strontium titanate (BST) capacitors to cancel the electrostatic capacitance of the BAW resonators. To do that we consider the nonlinear effects on the BAW resonators by use of a nonlinear Mason model. This model accounts for the distributed nonlinearities inherent in the materials forming the resonator. The whole filter is then implemented by properly connecting the resonators in a balanced configuration. Additional BST capacitors are included in the filter topology. The nonlinear behavior of the BST capacitors is also accounted in the overall nonlinear assessment. The whole circuit is then used to evaluate its nonlinear behavior. It is found that the nonlinear contribution arising from the ferroelectric nature of the BST capacitors makes it impractical to fulfill the linearity requirements of commercial filters
Modulational Instability and Complex Dynamics of Confined Matter-Wave Solitons
We study the formation of bright solitons in a Bose-Einstein condensate of
Li atoms induced by a sudden change in the sign of the scattering length
from positive to negative, as reported in a recent experiment (Nature {\bf
417}, 150 (2002)). The numerical simulations are performed by using the 3D
Gross-Pitaevskii equation (GPE) with a dissipative three-body term. We show
that a number of bright solitons is produced and this can be interpreted in
terms of the modulational instability of the time-dependent macroscopic wave
function of the Bose condensate. In particular, we derive a simple formula for
the number of solitons that is in good agreement with the numerical results of
3D GPE. By investigating the long time evolution of the soliton train solving
the 1D GPE with three-body dissipation we find that adjacent solitons repel
each other due to their phase difference. In addition, we find that during the
motion of the soliton train in an axial harmonic potential the number of
solitonic peaks changes in time and the density of individual peaks shows an
intermittent behavior. Such a complex dynamics explains the ``missing
solitons'' frequently found in the experiment.Comment: to be published in Phys. Rev. Let
Mixing effectiveness in the Apollo oxygen tanks of spin-up and rotation-reversal maneuvers
Two-dimensional simulations of stratified flows in the Apollo oxygen tanks have been used to estimate the mixing effectiveness of spin-up and rotation-reversal maneuvers. Calculations have been made for square and circular cylindrical tank geometries. Differences arising from heater position on the tank wall or near the center of the tank have been investigated. In the event of a prolonged period without normal maneuvers, the potential pressure decay (drop in pressure that would result from adiabatic mixing) can be suppressed by more than a factor of two through the use of spin-up and rotation-reversal maneuvers. Changes in rotation rate of order three revolutions per hour or greater are sufficient for this purpose
Coulomb gauge confinement in the heavy quark limit
The relationship between the nonperturbative Green's functions of Yang-Mills
theory and the confinement potential is investigated. By rewriting the
generating functional of quantum chromodynamics in terms of a heavy quark mass
expansion in Coulomb gauge, restricting to leading order in this expansion and
considering only the two-point functions of the Yang-Mills sector, the
rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown
to be exact in this case and an analytic, nonperturbative solution is
presented. It is found that there is a direct connection between the string
tension and the temporal gluon propagator. Further, it is shown that for the
4-point quark correlation functions, only confined bound states of
color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure
The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen
BACKGROUND: The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic β-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway. RESULTS: Castellaniella defragrans 65Phen oxidizes the monocyclic monoterpene limonene at the primary methyl group forming perillyl alcohol. The genome of 3.95 Mb contained a 70 kb genome island coding for over 50 proteins involved in the monoterpene metabolism. This island showed higher homology to genes of another monoterpene-mineralizing betaproteobacterium, Thauera terpenica 58Eu(T), than to genomes of the family Alcaligenaceae, which harbors the genus Castellaniella. A collection of 72 transposon mutants unable to grow on limonene contained 17 inactivated genes, with 46 mutants located in the two genes ctmAB (cyclic terpene metabolism). CtmA and ctmB were annotated as FAD-dependent oxidoreductases and clustered together with ctmE, a 2Fe-2S ferredoxin gene, and ctmF, coding for a NADH:ferredoxin oxidoreductase. Transposon mutants of ctmA, B or E did not grow aerobically or anaerobically on limonene, but on perillyl alcohol. The next steps in the pathway are catalyzed by the geraniol dehydrogenase GeoA and the geranial dehydrogenase GeoB, yielding perillic acid. Two transposon mutants had inactivated genes of the monoterpene ring cleavage (mrc) pathway. 2-Methylcitrate synthase and 2-methylcitrate dehydratase were also essential for the monoterpene metabolism but not for growth on acetate. CONCLUSIONS: The genome of Castellaniella defragrans 65Phen is related to other genomes of Alcaligenaceae, but contains a genomic island with genes of the monoterpene metabolism. Castellaniella defragrans 65Phen degrades limonene via a limonene dehydrogenase and the oxidation of perillyl alcohol. The initial oxidation at the primary methyl group is independent of molecular oxygen
- …
