1,707 research outputs found
Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films
The use of oxide materials in oxide electronics requires their controlled
epitaxial growth. Recently, it was shown that Reflection High Energy Electron
Diffraction (RHEED) allows to monitor the growth of oxide thin films even at
high oxygen pressure. Here, we report the sub-unit cell molecular or block
layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed
Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites
such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to
correspond to the growth of a single unit cell, in materials where the unit
cell is composed of several molecular layers or blocks with identical
stoichiometry, a sub-unit cell molecular or block layer growth is established
resulting in several RHEED intensity oscillations during the growth of a single
unit-cell
Epitaxial growth and transport properties of SrCrWO thin films
We report on the preparation and characterization of epitaxial thin films of
the double-perovskite SrCrWO by Pulsed Laser Deposition (PLD). On
substrates with low lattice mismatch like SrTiO, epitaxial SrCrWO
films with high crystalline quality can be grown in a molecular layer-by-layer
growth mode. Due to the similar ionic radii of Cr and W, these elements show no
sublattice order. Nevertheless, the measured Curie temperature is well above
400 K. Due to the reducing growth atmosphere required for double perovskites,
the SrTiO substrate surface undergoes an insulator-metal transition
impeding the separation of thin film and substrate electric transport
properties.Comment: 3 pages, 5 figure
Zero-order filter for diffractive focusing of de Broglie matter waves
The manipulation of neutral atoms and molecules via their de Broglie wave properties, also referred to as de Broglie matter wave optics, is relevant for several fields ranging from fundamental quantum mechanics tests and quantum metrology to measurements of interaction potentials and new imaging techniques. However, there are several challenges. For example, for diffractive focusing elements, the zero-order beam provides a challenge because it decreases the signal contrast. Here we present the experimental realization of a zero-order filter, also referred to as an order-sorting aperture for de Broglie matter wave diffractive focusing elements. The zero-order filter makes it possible to measure even at low beam intensities. We present measurements of zero-order filtered, focused, neutral helium beams generated at source stagnation pressures between 11 and 81 bars. We show that for certain conditions the atom focusing at lower source stagnation pressures (broader velocity distributions) is better than what has previously been predicted. We present simulations with the software ray-tracing simulation package mcstas using a realistic helium source configuration, which gives very good agreement with our measurements
Improved ruminant genetics: Implementation guidance for policymakers and investors
Genetics makes use of natural variation among animals. Selecting preferred animals as parents can yield permanent and cumulative improvements in the population. More efficient animals can greatly reduce greenhouse gas emissions and feed costs. Breeding, including cross-breeding between indigenous and imported species, can also improve resilience to diseases and heat stress and increase reproductive performance
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
An ellipsoidal mirror for focusing neutral atomic and molecular beams
Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope
Charge breeding of radioactive ions in an electron cyclotron resonance ion source (ECRIS) at ISOLDE
Degeneracy: a link between evolvability, robustness and complexity in biological systems
A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.
This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability
Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films
By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre-
pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320
C epitaxial growth is achieved. Depending on deposition parameters the films
show metallic or semiconducting behavior. At high (low) deposition temperature
the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples
have a large negative magnetoresistance which peaks at the Curie temperature.
The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in
agreement with the expected value for an ideal ferrimagnetic arrangement. We
found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K,
corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair.
In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due
to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike
contribution dominates the Hall voltage, which vanishes at low temperatures for
the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages,
including 5 pictures and 1 Table, submitted to Phys. Rev.
Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.
Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants
- …
