98 research outputs found
Autonomous 3D geometry reconstruction through robot-manipulated optical sensors
Many industrial sectors face increasing production demands and the need to reduce costs, without compromising the quality. The use of robotics and automation has grown significantly in recent years, but versatile robotic manipulators are still not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot programs for specific manufacturing tasks still relies on programming trajectory waypoints by hand. The use of virtual simulation software and the availability of the specimen digital models can facilitate robot programming. Nevertheless, in many cases, the virtual models are not available or there are excessive differences between virtual and real setups, leading to inaccurate robot programs and time-consuming manual corrections. Previous works have demonstrated the use of robot-manipulated optical sensors to map the geometry of samples. However, the use of simple user-defined robot paths, which are not optimized for a specific part geometry, typically causes some areas of the samples to not be mapped with the required level of accuracy or to not be sampled at all by the optical sensor. This work presents an autonomous framework to enable adaptive surface mapping, without any previous knowledge of the part geometry being transferred to the system. The novelty of this work lies in enabling the capability of mapping a part surface at the required level of sampling density, whilst minimizing the number of necessary view poses. Its development has also led to an efficient method of point cloud down-sampling and merging. The article gives an overview of the related work in the field, a detailed description of the proposed framework and a proof of its functionality through both simulated and experimental evidences
Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. Experimental cancer immunology and therap
Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso
Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology
Rejection of crosstalk and noise by a quasi balanced CFPI for remote ultrasound detection
- …
