2,637 research outputs found
Scintillation counter with MRS APD light readout
START, a high-efficiency and low-noise scintillation detector for ionizing
particles, was developed for the purpose of creating a high-granular system for
triggering cosmic muons. Scintillation light in START is detected by MRS APDs
(Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure),
operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is
assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and
two pieces of wavelength-shifting optical fiber stacked in circular coils
inside the plastic. The front-end electronic card is mounted directly on the
detector. Tests with START have confirmed its operational consistency, over 99%
efficiency of MIP registration and good homogeneity. START demonstrates a low
intrinsic noise of about 10^{-2} Hz. If these detectors are to be
mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate
level of 2-3 kUSD/m^2.Comment: 6 pages, 5 figure
Softening of Cu-O bond stretching phonon in tetragonal HgBaCuO
Phonons in nearly optimally doped HgBaCuO were studied by
inelastic X-ray scattering. The dispersion of the low energy modes is well
described by a shell model, while the Cu-O bond stretching mode at high energy
shows strong softening towards the zone boundary, which deviates strongly from
the model. This seems to be common in the hole-doped high-
superconducting cuprates, and, based on this work, not related to a lattice
distortion specific to each material.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let
Ab-initio study of structure and dynamics properties of crystalline ice
We investigated the structural and dynamical properties of a tetrahedrally
coordinated crystalline ice from first principles based on density functional
theory within the generalized gradient approximation with the projected
augmented wave method. First, we report the structural behaviour of ice at
finite temperatures based on the analysis of radial distribution functions
obtained by molecular dynamics simulations. The results show how the ordering
of the hydrogen bonding breaks down in the tetrahedral network of ice with
entropy increase in agreement with the neutron diffraction data. We also
calculated the phonon spectra of ice in a 3x1x1 supercell by using the direct
method. So far, due to the direct method used in this calculation, the phonon
spectra is obtained without taking into account the effect of polarization
arising from dipole-dipole interactions of water molecules which is expected to
yield the splitting of longitudinal and transverse optic modes at the
Gamma-point. The calculated longitudinal acoustic velocities from the initial
slopes of the acoustic mode is in a reasonable agreement with the neutron
scatering data. The analysis of the vibrational density of states shows the
existence of a boson peak at low energy of translational region a
characteristic common to amorphous systems.Comment: International symposium on structure and dynamics of heterogeneous
system SDHS'0
Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer
We have measured scintillation properties of pure CsI crystals used in the
shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu
decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals
painted with a special wavelength-shifting solution were examined in a
custom-build detection apparatus (RASTA=radioactive source tomography
apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light
emitting diode as complementary probes of the scintillator light response. We
have extracted the total light output, axial light collection nonuniformities
and timing responses of the individual CsI crystals. These results predict
improved performance of the 3 pi sr PIBETA calorimeter due to the painted
lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment
did not affect appreciably the total light output and timing resolution of our
crystal sample. The predicted energy resolution for positrons and photons in
the energy range of 10-100 MeV was nevertheless improved due to the more
favorable axial light collection probability variation. We have compared
simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a
Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and
4 Tables, also available at
http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p
Lattice dynamics and electron-phonon coupling in transition metal diborides
The phonon density-of-states of transition metal diborides TMB2 with TM = Ti,
V, Ta, Nb and Y has been measured using the technique of inelastic neutron
scattering. The experimental data are compared with ab initio density
functional calculations whereby an excellent agreement is registered. The
calculations thus can be used to obtain electron-phonon spectral functions
within the isotropic limit. A comparison to similar data for MgB2 and AlB2
which were subject of prior publications as well as parameters important for
the superconducting properties are part of the discussion.Comment: 4 pages, 3 figure
High frequency longitudinal and transverse dynamics in water
High-resolution, inelastic x-ray scattering measurements of the dynamic
structure factor S(Q,\omega) of liquid water have been performed for wave
vectors Q between 4 and 30 nm^-1 in distinctly different thermodynamic
conditions (T= 263 - 420 K ; at, or close to, ambient pressure and at P = 2
kbar). In agreement with previous inelastic x-ray and neutron studies, the
presence of two inelastic contributions (one dispersing with Q and the other
almost non-dispersive) is confirmed. The study of their temperature- and
Q-dependence provides strong support for a dynamics of liquid water controlled
by the structural relaxation process. A viscoelastic analysis of the
Q-dispersing mode, associated with the longitudinal dynamics, reveals that the
sound velocity undergoes the complete transition from the adiabatic sound
velocity (c_0) (viscous limit) to the infinite frequency sound velocity
(c_\infinity) (elastic limit). On decreasing Q, as the transition regime is
approached from the elastic side, we observe a decrease of the intensity of the
second, weakly dispersing feature, which completely disappears when the viscous
regime is reached. These findings unambiguously identify the second excitation
to be a signature of the transverse dynamics with a longitudinal symmetry
component, which becomes visible in the S(Q,\omega) as soon as the purely
viscous regime is left.Comment: 28 pages, 12 figure
Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors
We have studied the oxygen-isotope effects on T_{c} and in-plane penetration
depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate
Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small
oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect
on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%).
The present results along with the previously observed isotope effects in
single-layer and double-layer cuprates indicate that the isotope exponent
\alpha_{O} in optimally doped cuprates is small while the isotope effect on the
in-plane effective supercarrier mass is substantial and nearly independent of
the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to
explain the isotope effects, high-T_{c} superconductivity and tunneling spectra
in a consistent way.Comment: 5 pages, 4 figure
LiBC by polarized Raman spectroscopy: Evidence for lower crystal symmetry ?
The paper presents polarized Raman scattering study on a few-micron-size
crystallite of LiBC with natural faces. The experiment on as grown sample has
revealed a four lattice modes with frequencies at 1276 cm^-1, 830 cm^-1, 546
cm^-1 and 170 cm^-1, respectively. The number of observed Raman lines and their
selection rules are incompatible with the assumed D6h symmetry. The modes at
1276 cm^-1 and 170 cm^-1 correspond to the expected Raman active modes. In
contrast with the superconducting compound MgB2, the B-C bond stretching mode
(at 1276 cm^-1) has rather small damping. The two "forbidden" modes (at 830
cm^-1 and 546 cm^-1) disappeared after subsequent thermal treatment.Comment: 4 pages, LaTeX, complementary experimental resul
Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer
We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
- …
