1,086 research outputs found
Engineering spin squeezing in a 3D optical lattice with interacting spin-orbit-coupled fermions
One of the most important tasks in modern quantum science is to coherently
control and entangle many-body systems, and to subsequently use these systems
to realize powerful quantum technologies such as quantum-enhanced sensors.
However, many-body entangled states are difficult to prepare and preserve since
internal dynamics and external noise rapidly degrade any useful entanglement.
Here, we introduce a protocol that counterintuitively exploits inhomogeneities,
a typical source of dephasing in a many-body system, in combination with
interactions to generate metrologically useful and robust many-body entangled
states. Motivated by current limitations in state-of-the-art three-dimensional
(3D) optical lattice clocks (OLCs) operating at quantum degeneracy, we use
local interactions in a Hubbard model with spin-orbit coupling to achieve a
spin-locking effect. In addition to prolonging inter-particle spin coherence,
spin-locking transforms the dephasing effect of spin-orbit coupling into a
collective spin-squeezing process that can be further enhanced by applying a
modulated drive. Our protocol is fully compatible with state-of-the-art 3D OLC
interrogation schemes and may be used to improve their sensitivity, which is
currently limited by the intrinsic quantum noise of independent atoms. We
demonstrate that even with realistic experimental imperfections, our protocol
may generate -- dB of spin squeezing in second with
-- atoms. This capability allows OLCs to enter a new era of
quantum enhanced sensing using correlated quantum states of driven
non-equilibrium systems.Comment: 20 pages, 12 figure
Spontaneous decompactification
Positive vacuum energy together with extra dimensions of space imply that our
four-dimensional Universe is unstable, generically to decompactification of the
extra dimensions. Either quantum tunneling or thermal fluctuations carry one
past a barrier into the decompactifying regime. We give an overview of this
process, and examine the subsequent expansion into the higher- dimensional
geometry. This is governed by certain fixed-point solutions of the evolution
equations, which are studied for both positive and negative spatial curvature.
In the case where there is a higher-dimensional cosmological constant, we also
outline a possible mechanism for compactification to a four-dimensional de
Sitter cosmology.Comment: 27 pages, 5 figures, harvmac. v2: refs added, minor notation change
Non-holomorphic Corrections from Threebranes in F Theory
We construct solutions of type IIB supergravity dual to N=2 super Yang-Mills
theories. By considering a probe moving in a background with constant coupling
and an AdS_{5} component in its geometry, we are able to reproduce the exact
low energy effective action for the theory with gauge group SU(2) and N_{f}=4
massless flavors. After turning on a mass for the flavors we find corrections
to the AdS_{5} geometry. In addition, the coupling shows a power law dependence
on the energy scale of the theory. The origin of the power law behaviour of the
coupling is traced back to instanton corrections. Instanton corrections to the
four derivative terms in the low energy effective action are correctly obtained
from a probe analysis. By considering a Wilson loop in this geometry we are
also able to compute the instanton effects on the quark-antiquark potential.
Finally we consider a solution corresponding to an asymptotically free field
theory. Again, the leading form of the four derivative terms in the low energy
effective action are in complete agreement with field theory expectations.Comment: 23 pages, uses harvmac, References added, typos corrected and minor
improvements to discussion of N dependence, to appear in Phys. Rev.
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
The Role of Industry, Geography and Firm Heterogeneity in Credit Risk Diversification
In theory the potential for credit risk diversification for banks could be substantial. Portfolio diversification is driven broadly by two characteristics: the degree to which systematic risk factors are correlated with each other and the degree of dependence individual firms have to the different types of risk factors. We propose a model for exploring these dimensions of credit risk diversification: across industry sectors and across different countries or regions. We find that full firm-level parameter heterogeneity matters a great deal for capturing differences in simulated credit loss distributions. Imposing homogeneity results in overly skewed and fat-tailed loss distributions. These differences become more pronounced in the presence of systematic risk factor shocks: increased parameter heterogeneity greatly reduces shock sensitivity. Allowing for regional parameter heterogeneity seems to better approximate the loss distributions generated by the fully heterogeneous model than allowing just for industry heterogeneity. The regional model also exhibits less shock sensitivity
Factors underlying age-related changes in discrete aiming
Age has a clear impact on one’s ability to make accurate goal-directed aiming movements. Older adults seem to plan slower and shorter-ranged initial pulses towards the target, and rely more on sensory feedback to ensure endpoint accuracy. Despite the fact that these age-related changes in manual aiming have been observed consistently, the underlying mechanism remains speculative. In an attempt to isolate four commonly suggested underlying factors, young and older adults were instructed to make discrete aiming movements under varying speed and accuracy constraints. Results showed that older adults were physically able to produce fast primary submovements and that they demonstrated similar movement-programming capacities as young adults. On the other hand, considerable evidence was found supporting a decreased visual feedback-processing efficiency and the implementation of a play-it-safe strategy in older age. In conclusion, a combination of the latter two factors seems to underlie the age-related changes in manual aiming behaviour
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating
Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al
Simian Immunodeficiency Virus Infection of Chimpanzees (Pan troglodytes) Shares Features of Both Pathogenic and Non-pathogenic Lentiviral Infections.
The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of β2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in 'natural host' species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections.This work was supported by the Biotechnology and Biological Sciences Research Council and by the Wellcome Trust.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.ppat.100514
- …
