42 research outputs found
Bioactive compounds from Artemisia dracunculus L. activate AMPK signaling in skeletal muscle
An extract from Artemisia dracunculus L. (termed PMI-5011) improves glucose homeostasis by enhancing insulin action and reducing ectopic lipid accumulation, while increasing fat oxidation in skeletal muscle tissue in obese insulin resistant male mice. A chalcone, DMC-2, in PMI-5011 is the major bioactive that enhances insulin signaling and activation of AKT. However, the mechanism by which PMI-5011 improves lipid metabolism is unknown. AMPK is the cellular energy and metabolic sensor and a key regulator of lipid metabolism in muscle. This study examined PMI-5011 activation of AMPK signaling using murine C2C12 muscle cell culture and skeletal muscle tissue. Findings show that PMI-5011 increases Thr172-phosphorylation of AMPK in muscle cells and skeletal muscle tissue, while hepatic AMPK activation by PMI-5011 was not observed. Increased AMPK activity by PMI-5011 affects downstream signaling of AMPK, resulting in inhibition of ACC and increased SIRT1 protein levels. Selective deletion of DMC-2 from PMI-5011 demonstrates that compounds other than DMC-2 in a “DMC-2 knock out extract” (KOE) are responsible for AMPK activation and its downstream effects. Compared to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and metformin, the phytochemical mixture characterizing the KOE appears to more efficiently activate AMPK in muscle cells. KOE-mediated AMPK activation was LKB-1 independent, suggesting KOE does not activate AMPK via LKB-1 stimulation. Through AMPK activation, compounds in PMI-5011 may regulate lipid metabolism in skeletal muscle. Thus, the AMPK-activating potential of the KOE adds therapeutic value to PMI-5011 and its constituents in treating insulin resistance or type 2 diabetes
Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways
Phytochemical Composition and Metabolic Performance-Enhancing Activity of Dietary Berries Traditionally Used by Native North Americans
An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal Muscle Mass in a Murine Model of Diabetes
Stinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner
Salicylic acid — A potential biomarker of tobacco Bel-W3 cell death developed as a response to ground level ozone under ambient conditions
A high-throughput method for the quantitative analysis of auxins
Auxin measurements in plants are critical to understanding both auxin signaling and metabolic homeostasis. The most abundant natural auxin is indole-3-acetic acid (IAA). This protocol is for the precise, high-throughput determination of free IAA in plant tissue by isotope dilution analysis using gas chromatography-mass spectrometry (GC-MS). The steps described are as follows: harvesting of plant material; amino and polymethylmethacrylate solid-phase purification followed by derivatization with diazomethane (either manual or robotic); GC-MS analysis; and data analysis. [¹³C₆]IAA is the standard used. The amount of tissue required is relatively small (25 mg of fresh weight) and one can process more than 500 samples per week using an automated system. To extract eight samples, this procedure takes ∼3 h, whether performed manually or robotically. For processing more than eight samples, robotic extraction becomes substantially more time efficient, saving at least 0.5 h per additional batch of eight samples
