33,553 research outputs found
Preliminary evaluation of waste processing in a CELSS
Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system
Gaussian Process Structural Equation Models with Latent Variables
In a variety of disciplines such as social sciences, psychology, medicine and
economics, the recorded data are considered to be noisy measurements of latent
variables connected by some causal structure. This corresponds to a family of
graphical models known as the structural equation model with latent variables.
While linear non-Gaussian variants have been well-studied, inference in
nonparametric structural equation models is still underdeveloped. We introduce
a sparse Gaussian process parameterization that defines a non-linear structure
connecting latent variables, unlike common formulations of Gaussian process
latent variable models. The sparse parameterization is given a full Bayesian
treatment without compromising Markov chain Monte Carlo efficiency. We compare
the stability of the sampling procedure and the predictive ability of the model
against the current practice.Comment: 12 pages, 6 figure
A Field Guide to Genetic Programming
xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction --
Representation, initialisation and operators in Tree-based GP --
Getting ready to run genetic programming --
Example genetic programming run --
Alternative initialisations and operators in Tree-based GP --
Modular, grammatical and developmental Tree-based GP --
Linear and graph genetic programming --
Probalistic genetic programming --
Multi-objective genetic programming --
Fast and distributed genetic programming --
GP theory and its applications --
Applications --
Troubleshooting GP --
Conclusions.Contents
xi
1 Introduction
1.1 Genetic Programming in a Nutshell
1.2 Getting Started
1.3 Prerequisites
1.4 Overview of this Field Guide I
Basics
2 Representation, Initialisation and GP
2.1 Representation
2.2 Initialising the Population
2.3 Selection
2.4 Recombination and Mutation Operators in Tree-based
3 Getting Ready to Run Genetic Programming 19
3.1 Step 1: Terminal Set 19
3.2 Step 2: Function Set 20
3.2.1 Closure 21
3.2.2 Sufficiency 23
3.2.3 Evolving Structures other than Programs 23
3.3 Step 3: Fitness Function 24
3.4 Step 4: GP Parameters 26
3.5 Step 5: Termination and solution designation 27
4 Example Genetic Programming Run
4.1 Preparatory Steps 29
4.2 Step-by-Step Sample Run 31
4.2.1 Initialisation 31
4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming
5 Alternative Initialisations and Operators in
5.1 Constructing the Initial Population
5.1.1 Uniform Initialisation
5.1.2 Initialisation may Affect Bloat
5.1.3 Seeding
5.2 GP Mutation
5.2.1 Is Mutation Necessary?
5.2.2 Mutation Cookbook
5.3 GP Crossover
5.4 Other Techniques 32
5.5 Tree-based GP 39
6 Modular, Grammatical and Developmental Tree-based GP 47
6.1 Evolving Modular and Hierarchical Structures 47
6.1.1 Automatically Defined Functions 48
6.1.2 Program Architecture and Architecture-Altering 50
6.2 Constraining Structures 51
6.2.1 Enforcing Particular Structures 52
6.2.2 Strongly Typed GP 52
6.2.3 Grammar-based Constraints 53
6.2.4 Constraints and Bias 55
6.3 Developmental Genetic Programming 57
6.4 Strongly Typed Autoconstructive GP with PushGP 59
7 Linear and Graph Genetic Programming 61
7.1 Linear Genetic Programming 61
7.1.1 Motivations 61
7.1.2 Linear GP Representations 62
7.1.3 Linear GP Operators 64
7.2 Graph-Based Genetic Programming 65
7.2.1 Parallel Distributed GP (PDGP) 65
7.2.2 PADO 67
7.2.3 Cartesian GP 67
7.2.4 Evolving Parallel Programs using Indirect Encodings 68
8 Probabilistic Genetic Programming
8.1 Estimation of Distribution Algorithms 69
8.2 Pure EDA GP 71
8.3 Mixing Grammars and Probabilities 74
9 Multi-objective Genetic Programming 75
9.1 Combining Multiple Objectives into a Scalar Fitness Function 75
9.2 Keeping the Objectives Separate 76
9.2.1 Multi-objective Bloat and Complexity Control 77
9.2.2 Other Objectives 78
9.2.3 Non-Pareto Criteria 80
9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80
9.4 Multi-objective Optimisation via Operator Bias 81
10 Fast and Distributed Genetic Programming 83
10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83
10.2 Reducing Cost of Fitness with Caches 86
10.3 Parallel and Distributed GP are Not Equivalent 88
10.4 Running GP on Parallel Hardware 89
10.4.1 Master–slave GP 89
10.4.2 GP Running on GPUs 90
10.4.3 GP on FPGAs 92
10.4.4 Sub-machine-code GP 93
10.5 Geographically Distributed GP 93
11 GP Theory and its Applications 97
11.1 Mathematical Models 98
11.2 Search Spaces 99
11.3 Bloat 101
11.3.1 Bloat in Theory 101
11.3.2 Bloat Control in Practice 104
III
Practical Genetic Programming
12 Applications
12.1 Where GP has Done Well
12.2 Curve Fitting, Data Modelling and Symbolic Regression
12.3 Human Competitive Results – the Humies
12.4 Image and Signal Processing
12.5 Financial Trading, Time Series, and Economic Modelling
12.6 Industrial Process Control
12.7 Medicine, Biology and Bioinformatics
12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii
12.9 Entertainment and Computer Games 127
12.10The Arts 127
12.11Compression 128
13 Troubleshooting GP
13.1 Is there a Bug in the Code?
13.2 Can you Trust your Results?
13.3 There are No Silver Bullets
13.4 Small Changes can have Big Effects
13.5 Big Changes can have No Effect
13.6 Study your Populations
13.7 Encourage Diversity
13.8 Embrace Approximation
13.9 Control Bloat
13.10 Checkpoint Results
13.11 Report Well
13.12 Convince your Customers
14 Conclusions
Tricks of the Trade
A Resources
A.1 Key Books
A.2 Key Journals
A.3 Key International Meetings
A.4 GP Implementations
A.5 On-Line Resources 145
B TinyGP 151
B.1 Overview of TinyGP 151
B.2 Input Data Files for TinyGP 153
B.3 Source Code 154
B.4 Compiling and Running TinyGP 162
Bibliography 167
Inde
A possible way to relate the "covariantization" and the negative dimensional integration methods in the light cone gauge
In this work we present a possible way to relate the method of covariantizing
the gauge dependent pole and the negative dimensional integration method for
computing Feynman integrals pertinent to the light-cone gauge fields. Both
techniques are applicable to the algebraic light-cone gauge and dispense with
prescriptions to treat the characteristic poles.Comment: 9 page
Quantum Phase Transition and Universal Dynamics in the Rabi model
We consider the Rabi Hamiltonian which exhibits a quantum phase transition
(QPT) despite consisting only of a single-mode cavity field and a two-level
atom. We prove QPT by deriving an exact solution in the limit where the atomic
transition frequency in unit of the cavity frequency tends to infinity. The
effect of a finite transition frequency is studied by analytically calculating
finite-frequency scaling exponents as well as performing a numerically exact
diagonalization. Going beyond this equilibrium QPT setting, we prove that the
dynamics under slow quenches in the vicinity of the critical point is
universal, that is, the dynamics is completely characterized by critical
exponents. Our analysis demonstrates that the Kibble-Zurek mechanism can
precisely predict the universal scaling of residual energy for a model without
spatial degrees of freedom. Moreover, we find that the onset of the universal
dynamics can be observed even with a finite transition frequency.Comment: 5 pages, 3 figure
Excited-state quantum phase transition in the Rabi model
The Rabi model, a two-level atom coupled to a harmonic oscillator, can
undergo a second-order quantum phase transition (QPT) [M. -J. Hwang et al,
Phys. Rev. Lett. 115, 180404 (2015)]. Here we show that the Rabi QPT
accompanies critical behavior in the higher energy excited states, i.e., the
excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical
density of states, which shows a logarithmic divergence at a critical energy
eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that
the logarithmic singularities in the density of states leads to singularities
in the relevant observables in the system such as photon number and atomic
polarization. We corroborate our analytical semiclassical prediction of the
ESQPT in the Rabi model with its numerically exact quantum mechanical solution.Comment: 9 pages, 6 figure
- …
