1,345 research outputs found
Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems
The velocity of resonant tunneling electrons in finite periodic
structures is analytically calculated in two ways. The first method is based on
the fact that a transmission of unity leads to a coincidence of all still
competing tunneling time definitions. Thus, having an indisputable resonant
tunneling time we apply the natural definition
to calculate the velocity. For the second method we
combine Bloch's theorem with the transfer matrix approach to decompose the wave
function into two Bloch waves. Then the expectation value of the velocity is
calculated. Both different approaches lead to the same result, showing their
physical equivalence. The obtained resonant tunneling velocity is
smaller or equal to the group velocity times the magnitude of the complex
transmission amplitude of the unit cell. Only at energies where the unit cell
of the periodic structure has a transmission of unity equals the
group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are
performed. For typical parameters the resonant velocity is below one third of
the group velocity.Comment: 12 pages, 3 figures, LaTe
Leading and higher twists in the proton polarized structure function at large Bjorken x
A phenomenological parameterization of the proton polarized structure
function has been developed for x > 0.02 using deep inelastic data up to ~ 50
(GeV/c)**2 as well as available experimental results on both photo- and
electro-production of proton resonances. According to the new parameterization
the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a
zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order
polarized Nachtmann moments have been estimated and their Q**2-behavior has
been investigated in terms of leading and higher twists for Q**2 > 1
(GeV/c)**2. The leading twist has been treated at NLO in the strong coupling
constant and the effects of higher orders of the perturbative series have been
estimated using soft-gluon resummation techniques. In case of the first moment
higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and
the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/-
0.09. In case of higher order moments, which are sensitive to the large-x
region, higher-twist effects are significantly reduced by the introduction of
soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2
at variance with the case of the unpolarized transverse structure function of
the proton. Our finding suggests that spin-dependent correlations among partons
may have more impact than spin-independent ones. As a byproduct, it is also
shown that the Bloom-Gilman local duality is strongly violated in the region of
polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the
generalized DHG sum rul
Neutron spectrometer for fast nuclear reactors
In this paper we describe the development and first tests of a neutron
spectrometer designed for high flux environments, such as the ones found in
fast nuclear reactors. The spectrometer is based on the conversion of neutrons
impinging on Li into and whose total energy comprises the
initial neutron energy and the reaction -value. The LiF layer is
sandwiched between two CVD diamond detectors, which measure the two reaction
products in coincidence. The spectrometer was calibrated at two neutron
energies in well known thermal and 3 MeV neutron fluxes. The measured neutron
detection efficiency varies from 4.2 to 3.5 for
thermal and 3 MeV neutrons, respectively. These values are in agreement with
Geant4 simulations and close to simple estimates based on the knowledge of the
Li(n,) cross section. The energy resolution of the spectrometer
was found to be better than 100 keV when using 5 m cables between the detector
and the preamplifiers.Comment: submitted to NI
Nonlinear feedback oscillations in resonant tunneling through double barriers
We analyze the dynamical evolution of the resonant tunneling of an ensemble
of electrons through a double barrier in the presence of the self-consistent
potential created by the charge accumulation in the well.
The intrinsic nonlinearity of the transmission process is shown to lead to
oscillations of the stored charge and of the transmitted and reflected fluxes.
The dependence on the electrostatic feedback induced by the self-consistent
potential and on the energy width of the incident distribution is discussed.Comment: 10 pages, TeX, 5 Postscript figure
The Effects of Resonant Tunneling on Magnetoresistance through a Q uantum Dot
The effect of resonant tunneling on magnetoresistance (MR) is studied
theoretically in a double junction system. We have found that the ratio of the
MR of the resonant peak current is reduced more than that of the single
junction, whereas that of the valley current is enhanced depending on the
change of the discrete energy-level under the change of magnetic field. We also
found that the peak current-valley current (PV) ratio decreases when the
junction conductance increases.Comment: 11 pages, 3 figures(mail if you need), use revtex.st
Dynamic instabilities in resonant tunneling induced by a magnetic field
We show that the addition of a magnetic field parallel to the current induces
self sustained intrinsic current oscillations in an asymmetric double barrier
structure. The oscillations are attributed to the nonlinear dynamic coupling of
the current to the charge trapped in the well, and the effect of the external
field over the local density of states across the system. Our results show that
the system bifurcates as the field is increased, and may transit to chaos at
large enough fields.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Letter
Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6
We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped
Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor
of three in the optimal superconducting critical temperatures for
Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral
energy scales, we find that the pseudogap vanishes at a similar characteristic
temperature T*\approx 230-300K for both compounds. We find also that in
Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the
intrinsic spectra.Comment: Submitted to Phys. Rev. Let
Dynamical description of the buildup process in resonant tunneling: Evidence of exponential and non-exponential contributions
The buildup process of the probability density inside the quantum well of a
double-barrier resonant structure is studied by considering the analytic
solution of the time dependent Schr\"{o}dinger equation with the initial
condition of a cutoff plane wave. For one level systems at resonance condition
we show that the buildup of the probability density obeys a simple charging up
law, where is the
stationary wave function and the transient time constant is exactly
two lifetimes. We illustrate that the above formula holds both for symmetrical
and asymmetrical potential profiles with typical parameters, and even for
incidence at different resonance energies. Theoretical evidence of a crossover
to non-exponential buildup is also discussed.Comment: 4 pages, 2 figure
Global Analysis of Data on the Proton Structure Function g1 and Extraction of its Moments
Inspired by recent measurements with the CLAS detector at Jefferson Lab, we
perform a self-consistent analysis of world data on the proton structure
function g1 in the range 0.17 < Q2 < 30 (GeV/c)**2. We compute for the first
time low-order moments of g1 and study their evolution from small to large
values of Q2. The analysis includes the latest data on both the unpolarized
inclusive cross sections and the ratio R = sigmaL / sigmaT from Jefferson Lab,
as well as a new model for the transverse asymmetry A2 in the resonance region.
The contributions of both leading and higher twists are extracted, taking into
account effects from radiative corrections beyond the next-to-leading order by
means of soft-gluon resummation techniques. The leading twist is determined
with remarkably good accuracy and is compared with the predictions obtained
using various polarized parton distribution sets available in the literature.
The contribution of higher twists to the g1 moments is found to be
significantly larger than in the case of the unpolarized structure function F2.Comment: 18 pages, 13 figures, to appear in Phys. Rev.
- …
