3,252 research outputs found

    About the determination of critical exponents related to possible phase transitions in nuclear fragmentation

    Get PDF
    We introduce a method based on the finite size scaling assumption which allows to determine numerically the critical point and critical exponents related to observables in an infinite system starting from the knowledge of the observables in finite systems. We apply the method to bond percolation in 2 dimensions and compare the results obtained when the bond probability p or the fragment multiplicity m are chosen as the relevant parameter.Comment: 12 pages, TeX, 4 figure

    Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential

    Full text link
    We study the transport properties of two electrons in a quasi one-dimensional disordered wire. The electrons are subject to both, a disorder potential and a short range two-body interaction. Using the approach developed by Iida et al. [ Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable truncation of Hilbert space, we work out the two-point correlation function in the framework of a non-linear sigma model. We study the loop corrections to arbitrary order. We obtain a remarkably simple and physically transparent expression for the change of the localization length caused by the two-body interaction.Comment: 10 page

    Properties of low-lying states in a diffusive quantum dot and Fock-space localization

    Get PDF
    Motivated by an experiment by Sivan et al. (Europhys. Lett. 25, 605 (1994)) and by subsequent theoretical work on localization in Fock space, we study numerically a hierarchical model for a finite many-body system of Fermions moving in a disordered potential and coupled by a two-body interaction. We focus attention on the low-lying states close to the Fermi energy. Both the spreading width and the participation number depend smoothly on excitation energy. This behavior is in keeping with naive expectations and does not display Anderson localization. We show that the model reproduces essential features of the experiment by Sivan et al.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Spinodal decomposition of expanding nuclear matter and multifragmentation

    Full text link
    Density fluctuations of expanding nuclear matter are studied within a mean-field model in which fluctuations are generated by an external stochastic field. Fluctuations develop about a mean one-body phase-space density corresponding to a hydrodinamic motion that describes a slow expansion of the system. A fluctuation-dissipation relation suitable for a uniformly expanding medium is obtained and used to constrain the strength of the stochastic field. The distribution of the liquid domains in the spinodal decomposition is derived. Comparison of the related distribution of the fragment size with experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.

    Hole-burning experiments within solvable glassy models

    Full text link
    We reproduce the results of non-resonant spectral hole-burning experiments with fully-connected (equivalently infinite-dimensional) glassy models that are generalizations of the mode-coupling approach to nonequilibrium situations. We show that an ac-field modifies the integrated linear response and the correlation function in a way that depends on the amplitude and frequency of the pumping field. We study the effect of the waiting and recovery-times and the number of oscillations applied. This calculation will help descriminating which results can and which cannot be attributed to dynamic heterogeneities in real systems.Comment: 4 pages, 8 figures, RevTe

    Dynamical heterogeneities in a supercooled Lennard-Jones liquid

    Full text link
    We present the results of a large scale molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify ``mobile'' particles. We find that these particles form clusters whose size grows with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the bulk, and that this difference increases with decreasing temperature.Comment: 8 pages of RevTex, 4 ps figure

    Renormalisation and fixed points in Hilbert Space

    Full text link
    The energies of low-lying bound states of a microscopic quantum many-body system of particles can be worked out in a reduced Hilbert space. We present here and test a specific non-perturbative truncation procedure. We also show that real exceptional points which may be present in the spectrum can be identified as fixed points of coupling constants in the truncation procedure.Comment: 4 pages, 1 tabl

    Light-particle emission from the fissioning nuclei 126Ba, 188Pt and (266,272,278)/110: theoretical predictions and experimental results

    Full text link
    We present a comparison of our model treating fission dynamics in conjunction with light-particle (n, p, alpha) evaporation with the available experimental data for the nuclei 126Ba, 188Pt and three isotopes of the element Z=110. The dynamics of the symmetric fission process is described through the solution of a classical Langevin equation for a single collective variable characterizing the nuclear deformation along the fission path. A microscopic approach is used to evaluate the emission rates for pre-fission light particles. Entrance-channel effects are taken into account by generating an initial spin distribution of the compound nucleus formed by the fusion of two deformed nuclei with different relative orientations

    Finite size effects and the order of a phase transition in fragmenting nuclear systems

    Get PDF
    We discuss the implications of finite size effects on the determination of the order of a phase transition which may occur in infinite systems. We introduce a specific model to which we apply different tests. They are aimed to characterise the smoothed transition observed in a finite system. We show that the microcanonical ensemble may be a useful framework for the determination of the nature of such transitions.Comment: LateX, 5 pages, 5 figures; Fig. 1 change

    Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation

    Full text link
    We study aging dynamics in two non-disordered spin models with multi-spin interactions, following a sudden quench to low temperature. The models are relevant to the physics of supercooled liquids. Their low temperature dynamics resemble those of kinetically constrained models, and obey dynamical scaling, controlled by zero-temperature critical points. Dynamics in both models are thermally activated, resulting in multi-stage relaxation towards equilibrium. We study several two-time correlation and response functions. We find that equilibrium fluctuation-dissipation relations are generically not satisfied during the aging regime, but deviations from them are well described by fluctuation-dissipation ratios, as found numerically in supercooled liquids. These ratios are purely dynamic objects, containing information about the nature of relaxation in the models. They are non-universal, and can even be negative as a result of activated dynamics. Thus, effective temperatures are not well-defined in these models.Comment: 29 pages, 10 fig
    corecore