3,252 research outputs found
About the determination of critical exponents related to possible phase transitions in nuclear fragmentation
We introduce a method based on the finite size scaling assumption which
allows to determine numerically the critical point and critical exponents
related to observables in an infinite system starting from the knowledge of the
observables in finite systems. We apply the method to bond percolation in 2
dimensions and compare the results obtained when the bond probability p or the
fragment multiplicity m are chosen as the relevant parameter.Comment: 12 pages, TeX, 4 figure
Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential
We study the transport properties of two electrons in a quasi one-dimensional
disordered wire. The electrons are subject to both, a disorder potential and a
short range two-body interaction. Using the approach developed by Iida et al. [
Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable
truncation of Hilbert space, we work out the two-point correlation function in
the framework of a non-linear sigma model. We study the loop corrections to
arbitrary order. We obtain a remarkably simple and physically transparent
expression for the change of the localization length caused by the two-body
interaction.Comment: 10 page
Properties of low-lying states in a diffusive quantum dot and Fock-space localization
Motivated by an experiment by Sivan et al. (Europhys. Lett. 25, 605 (1994))
and by subsequent theoretical work on localization in Fock space, we study
numerically a hierarchical model for a finite many-body system of Fermions
moving in a disordered potential and coupled by a two-body interaction. We
focus attention on the low-lying states close to the Fermi energy. Both the
spreading width and the participation number depend smoothly on excitation
energy. This behavior is in keeping with naive expectations and does not
display Anderson localization. We show that the model reproduces essential
features of the experiment by Sivan et al.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let
Spinodal decomposition of expanding nuclear matter and multifragmentation
Density fluctuations of expanding nuclear matter are studied within a
mean-field model in which fluctuations are generated by an external stochastic
field. Fluctuations develop about a mean one-body phase-space density
corresponding to a hydrodinamic motion that describes a slow expansion of the
system. A fluctuation-dissipation relation suitable for a uniformly expanding
medium is obtained and used to constrain the strength of the stochastic field.
The distribution of the liquid domains in the spinodal decomposition is
derived. Comparison of the related distribution of the fragment size with
experimental data on the nuclear multifragmentation is quite satisfactory.Comment: 19 RevTex4 pages, 6 eps figures, to appear in Phys. Rev.
Hole-burning experiments within solvable glassy models
We reproduce the results of non-resonant spectral hole-burning experiments
with fully-connected (equivalently infinite-dimensional) glassy models that are
generalizations of the mode-coupling approach to nonequilibrium situations. We
show that an ac-field modifies the integrated linear response and the
correlation function in a way that depends on the amplitude and frequency of
the pumping field. We study the effect of the waiting and recovery-times and
the number of oscillations applied. This calculation will help descriminating
which results can and which cannot be attributed to dynamic heterogeneities in
real systems.Comment: 4 pages, 8 figures, RevTe
Dynamical heterogeneities in a supercooled Lennard-Jones liquid
We present the results of a large scale molecular dynamics computer
simulation study in which we investigate whether a supercooled Lennard-Jones
liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian
parameter for the self part of the van Hove correlation function and use it to
identify ``mobile'' particles. We find that these particles form clusters whose
size grows with decreasing temperature. We also find that the relaxation time
of the mobile particles is significantly shorter than that of the bulk, and
that this difference increases with decreasing temperature.Comment: 8 pages of RevTex, 4 ps figure
Renormalisation and fixed points in Hilbert Space
The energies of low-lying bound states of a microscopic quantum many-body
system of particles can be worked out in a reduced Hilbert space. We present
here and test a specific non-perturbative truncation procedure. We also show
that real exceptional points which may be present in the spectrum can be
identified as fixed points of coupling constants in the truncation procedure.Comment: 4 pages, 1 tabl
Light-particle emission from the fissioning nuclei 126Ba, 188Pt and (266,272,278)/110: theoretical predictions and experimental results
We present a comparison of our model treating fission dynamics in conjunction
with light-particle (n, p, alpha) evaporation with the available experimental
data for the nuclei 126Ba, 188Pt and three isotopes of the element Z=110. The
dynamics of the symmetric fission process is described through the solution of
a classical Langevin equation for a single collective variable characterizing
the nuclear deformation along the fission path. A microscopic approach is used
to evaluate the emission rates for pre-fission light particles.
Entrance-channel effects are taken into account by generating an initial spin
distribution of the compound nucleus formed by the fusion of two deformed
nuclei with different relative orientations
Finite size effects and the order of a phase transition in fragmenting nuclear systems
We discuss the implications of finite size effects on the determination of
the order of a phase transition which may occur in infinite systems. We
introduce a specific model to which we apply different tests. They are aimed to
characterise the smoothed transition observed in a finite system. We show that
the microcanonical ensemble may be a useful framework for the determination of
the nature of such transitions.Comment: LateX, 5 pages, 5 figures; Fig. 1 change
Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation
We study aging dynamics in two non-disordered spin models with multi-spin
interactions, following a sudden quench to low temperature. The models are
relevant to the physics of supercooled liquids. Their low temperature dynamics
resemble those of kinetically constrained models, and obey dynamical scaling,
controlled by zero-temperature critical points. Dynamics in both models are
thermally activated, resulting in multi-stage relaxation towards equilibrium.
We study several two-time correlation and response functions. We find that
equilibrium fluctuation-dissipation relations are generically not satisfied
during the aging regime, but deviations from them are well described by
fluctuation-dissipation ratios, as found numerically in supercooled liquids.
These ratios are purely dynamic objects, containing information about the
nature of relaxation in the models. They are non-universal, and can even be
negative as a result of activated dynamics. Thus, effective temperatures are
not well-defined in these models.Comment: 29 pages, 10 fig
- …
