2,682 research outputs found

    A tracking monitor for the MAGIC Telescope

    Get PDF

    Origin of the giant magnetic moments of Fe impurities on and in Cs films

    Full text link
    To explore the origin of the observed giant magnetic moments (7μB\sim 7 \mu_B) of Fe impurities on the surface and in the bulk of Cs films, we have performed the relativistic LSDA + U calculations using the linearized muffin-tin orbital (LMTO) band method. We have found that Fe impurities in Cs behave differently from those in noble metals or in Pd. Whereas the induced spin polarization of Cs atoms is negligible, the Fe ion itself is found to be the source of the giant magnetic moment. The 3d electrons of Fe in Cs are localized as the 4f electrons in rare-earth ions so that the orbital magnetic moment becomes as large as the spin magnetic moment. The calculated total magnetic moment of M=6.43μBM = 6.43 \mu_B, which comes mainly from Fe ion, is close to the experimentally observed value.Comment: 4 pages including 3 figures and 1 table. Submitted to PR

    Etching as an Embellishment Technique in Metalsmithing

    Get PDF

    Etching as an Embellishment Technique in Metalsmithing

    Get PDF

    HI Narrow Line Absorption in Dark Clouds

    Get PDF
    We have used the Arecibo telescope to carry out an survey of 31 dark clouds in the Taurus/Perseus region for narrow absorption features in HI (λ\lambda 21cm) and OH (1667 and 1665 MHz) emission. We detected HI narrow self--absorption (HINSA) in 77% of the clouds that we observed. HINSA and OH emission, observed simultaneously are remarkably well correlated. Spectrally, they have the same nonthermal line width and the same line centroid velocity. Spatially, they both peak at the optically--selected central position of each cloud, and both fall off toward the cloud edges. Sources with clear HINSA feature have also been observed in transitions of CO, \13co, \c18o, and CI. HINSA exhibits better correlation with molecular tracers than with CI. The line width of the absorption feature, together with analyses of the relevant radiative transfer provide upper limits to the kinetic temperature of the gas producing the HINSA. Some sources must have a temperature close to or lower than 10 K. The correlation of column densities and line widths of HINSA with those characteristics of molecular tracers suggest that a significant fraction of the atomic hydrogen is located in the cold, well--shielded portions of molecular clouds, and is mixed with the molecular gas. The average number density ratio [HI]/[\h2] is 1.5×1031.5\times10^{-3}. The inferred HI density appears consistent with but is slightly higher than the value expected in steady state equilibrium between formation of HI via cosmic ray destruction of H2_2 and destruction via formation of H2_2 on grain surfaces. The distribution and abundance of atomic hydrogen in molecular clouds is a critical test of dark cloud chemistry and structure, including the issues of grain surface reaction rates, PDRs, circulation, and turbulent diffusion.Comment: 40 pages, 10 figures, accepted by Ap

    Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

    Get PDF
    The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive source's spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter
    corecore