4,610 research outputs found

    Pointing calibration of the MKIVA DSN antennas Voyager 2 Uranus encounter operations support

    Get PDF
    The MKIVA DSN introduced significant changes to the pointing systems of the 34-meter and 64-meter diameter antennas. To support the Voyager 2 Uranus Encounter, the systems had to be accurately calibrated. Reliable techniques for use of the calibrations during intense mission support activity had to be provided. This article describes the techniques used to make the antenna pointing calibrations and to demonstrate their operational use. The results of the calibrations are summarized

    Sperm donors’ accounts of lesbian recipients: heterosexualisation as a tool for warranting claims to children’s ‘best interests’

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Psychology and Sexuality on 14 Mar 2013, available online: http://wwww.tandfonline.com/10.1080/19419899.2013.764921.Whilst there exists a considerable body of research documenting heterosexual couples’ use of donor sperm, relatively little is known about the experiences of lesbian recipients of donor sperm and the men who donate to them. Moreover, in all aspects of donor conception there is an ongoing debate over what constitutes children’s ‘best interests’, with this being most problematic in the unregulated private sector (of which lesbian use of donor sperm from gay men constitutes the largest portion). This article presents narratives of a sample of 16 gay men and one heterosexual man who had donated or who were in the process of donating sperm to lesbian recipients. Specifically, the article focuses on the ways in which the majority of the men elaborated a narrative in which their relationship to the birth mother was ‘heterosexualised’, a narrative that functioned to attribute to them a considerable role in determining the ‘best interests’ of donor-conceived children. The article concludes by providing suggestions for legislation and policy stemming from the findings, and recommends that greater attention be paid to the voices of donor-conceived children

    Planes, Chains, and Orbits: Quantum Oscillations and High Magnetic Field Heat Capacity in Underdoped YBCO

    Full text link
    The underlying physics of the magnetic-field-induced resistive state in high temperature cuprate superconductors remains a mystery. One interpretation is that the application of magnetic field destroys the d-wave superconducting gap to uncover a Fermi surface that behaves like a conventional (i.e.Fermi Liquid) metal (1). Another view is that an applied magnetic field destroys long range superconducting phase coherence, but the superconducting gap amplitude survives (2, 3). By measuring the specific heat of ultra-clean YBa2Cu3O6.56 (YBCO 6.56), we obtain a measure of the quasi-particle density of states from the superconducting state well into the magnetic-field-induced resistive state. We have found that at very high magnetic fields the specific heat exhibits both the conventional temperature dependence and quantum oscillations expected for a Fermi Liquid. On the other hand, the magnetic field dependence of the quasi-particle density of states follows a \sqrt{H} behavior that persists right through the zero-resistance transition, evidencing the fully developed d-wave superconducting gap over the entire magnetic field range measured. The coexistence of these two phenomena pose a rigorous thermodynamic constraint on theories of high-magnetic-field resistive state in the cuprates

    The Overlooked Potential of Generalized Linear Models in Astronomy-III: Bayesian Negative Binomial Regression and Globular Cluster Populations

    Get PDF
    In this paper, the third in a series illustrating the power of generalized linear models (GLMs) for the astronomical community, we elucidate the potential of the class of GLMs which handles count data. The size of a galaxy's globular cluster population NGCN_{\rm GC} is a prolonged puzzle in the astronomical literature. It falls in the category of count data analysis, yet it is usually modelled as if it were a continuous response variable. We have developed a Bayesian negative binomial regression model to study the connection between NGCN_{\rm GC} and the following galaxy properties: central black hole mass, dynamical bulge mass, bulge velocity dispersion, and absolute visual magnitude. The methodology introduced herein naturally accounts for heteroscedasticity, intrinsic scatter, errors in measurements in both axes (either discrete or continuous), and allows modelling the population of globular clusters on their natural scale as a non-negative integer variable. Prediction intervals of 99% around the trend for expected NGCN_{\rm GC}comfortably envelope the data, notably including the Milky Way, which has hitherto been considered a problematic outlier. Finally, we demonstrate how random intercept models can incorporate information of each particular galaxy morphological type. Bayesian variable selection methodology allows for automatically identifying galaxy types with different productions of GCs, suggesting that on average S0 galaxies have a GC population 35% smaller than other types with similar brightness.Comment: 14 pages, 12 figures. Accepted for publication in MNRA

    The Overlooked Potential of Generalized Linear Models in Astronomy - I: Binomial Regression

    Get PDF
    Revealing hidden patterns in astronomical data is often the path to fundamental scientific breakthroughs; meanwhile the complexity of scientific inquiry increases as more subtle relationships are sought. Contemporary data analysis problems often elude the capabilities of classical statistical techniques, suggesting the use of cutting edge statistical methods. In this light, astronomers have overlooked a whole family of statistical techniques for exploratory data analysis and robust regression, the so-called Generalized Linear Models (GLMs). In this paper -- the first in a series aimed at illustrating the power of these methods in astronomical applications -- we elucidate the potential of a particular class of GLMs for handling binary/binomial data, the so-called logit and probit regression techniques, from both a maximum likelihood and a Bayesian perspective. As a case in point, we present the use of these GLMs to explore the conditions of star formation activity and metal enrichment in primordial minihaloes from cosmological hydro-simulations including detailed chemistry, gas physics, and stellar feedback. We predict that for a dark mini-halo with metallicity 1.3×104Z\approx 1.3 \times 10^{-4} Z_{\bigodot}, an increase of 1.2×1021.2 \times 10^{-2} in the gas molecular fraction, increases the probability of star formation occurrence by a factor of 75%. Finally, we highlight the use of receiver operating characteristic curves as a diagnostic for binary classifiers, and ultimately we use these to demonstrate the competitive predictive performance of GLMs against the popular technique of artificial neural networks.Comment: 20 pages, 10 figures, 3 tables, accepted for publication in Astronomy and Computin

    Scale-invariant magnetoresistance in a cuprate superconductor

    Full text link
    The anomalous metallic state in high-temperature superconducting cuprates is masked by the onset of superconductivity near a quantum critical point. Use of high magnetic fields to suppress superconductivity has enabled a detailed study of the ground state in these systems. Yet, the direct effect of strong magnetic fields on the metallic behavior at low temperatures is poorly understood, especially near critical doping, x=0.19x=0.19. Here we report a high-field magnetoresistance study of thin films of \LSCO cuprates in close vicinity to critical doping, 0.161x0.1900.161\leq x\leq0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by a magnetoresistance that is linear in magnetic field up to the highest measured fields of 8080T. The slope of the linear-in-field resistivity is temperature-independent at very high fields. It mirrors the magnitude and doping evolution of the linear-in-temperature resistivity that has been ascribed to Planckian dissipation near a quantum critical point. This establishes true scale-invariant conductivity as the signature of the strange metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure

    The String Calculation of QCD Wilson Loops on Arbitrary Surfaces

    Full text link
    Compact string expressions are found for non-intersecting Wilson loops in SU(N) Yang-Mills theory on any surface (orientable or nonorientable) as a weighted sum over covers of the surface. All terms from the coupled chiral sectors of the 1/N expansion of the Wilson loop expectation values are included.Comment: 10 pages, LaTeX, no figure
    corecore