1,369 research outputs found

    The double Ringel-Hall algebra on a hereditary abelian finitary length category

    Full text link
    In this paper, we study the category H(ρ)\mathscr{H}^{(\rho)} of semi-stable coherent sheaves of a fixed slope ρ\rho over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of H(ρ)\mathscr{H}^{(\rho)} and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves.Comment: 29 page

    Applications of BGP-reflection functors: isomorphisms of cluster algebras

    Full text link
    Given a symmetrizable generalized Cartan matrix AA, for any index kk, one can define an automorphism associated with A,A, of the field Q(u1,>...,un)\mathbf{Q}(u_1, >..., u_n) of rational functions of nn independent indeterminates u1,...,un.u_1,..., u_n. It is an isomorphism between two cluster algebras associated to the matrix AA (see section 4 for precise meaning). When AA is of finite type, these isomorphisms behave nicely, they are compatible with the BGP-reflection functors of cluster categories defined in [Z1, Z2] if we identify the indecomposable objects in the categories with cluster variables of the corresponding cluster algebras, and they are also compatible with the "truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of preprojective or preinjective modules of hereditary algebras by Dlab-Ringel [DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we construct infinitely many cluster variables for cluster algebras of infinite type and all cluster variables for finite types.Comment: revised versio

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Representation theory of some infinite-dimensional algebras arising in continuously controlled algebra and topology

    Get PDF
    In this paper we determine the representation type of some algebras of infinite matrices continuously controlled at infinity by a compact metrizable space. We explicitly classify their finitely presented modules in the finite and tame cases. The algebra of row-column-finite (or locally finite) matrices over an arbitrary field is one of the algebras considered in this paper, its representation type is shown to be finite.Comment: 33 page

    Structural investigation of MOVPE-Grown GaAs on Ge by X-ray techniques

    Get PDF
    The selection of appropriate characterisation methodologies is vital for analysing and comprehending the sources of defects and their influence on the properties of heteroepitaxially grown III-V layers. In this work we investigate the structural properties of GaAs layers grown by Metal-Organic Vapour Phase Epitaxy (MOVPE) on Ge substrates – (100) with 6⁰ offset towards – under various growth conditions. Synchrotron X-ray topography (SXRT) is employed to investigate the nature of extended linear defects formed in GaAs epilayers. Other X-ray techniques, such as reciprocal space mapping (RSM) and triple axis ω-scans of (00l)-reflections (l = 2, 4, 6) are used to quantify the degree of relaxation and presence of antiphase domains (APDs) in the GaAs crystals. The surface roughness is found to be closely related to the size of APDs formed at the GaAs/Ge heterointerface, as confirmed by X-ray diffraction (XRD), as well as atomic force microscopy (AFM), and transmission electron microscopy (TEM)

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio
    corecore