7,849 research outputs found

    Quantum Non-Markovianity: Characterization, Quantification and Detection

    Full text link
    We present a comprehensive and up to date review on the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.Comment: Review article. Close to published versio

    Probing quantum coherence in qubit arrays

    Get PDF
    We discuss how the observation of population localization effects in periodically driven systems can be used to quantify the presence of quantum coherence in interacting qubit arrays. Essential for our proposal is the fact that these localization effects persist beyond tight-binding Hamiltonian models. This result is of special practical relevance in those situations where direct system probing using tomographic schemes becomes infeasible beyond a very small number of qubits. As a proof of principle, we study analytically a Hamiltonian system consisting of a chain of superconducting flux qubits under the effect of a periodic driving. We provide extensive numerical support of our results in the simple case of a two-qubits chain. For this system we also study the robustness of the scheme against different types of noise and disorder. We show that localization effects underpinned by quantum coherent interactions should be observable within realistic parameter regimes in chains with a larger number o

    Spatial rogue waves in photorefractive SBN crystals

    Full text link
    We report on the excitation of large-amplitude waves, with a probability of around 1% of total peaks, on a photorefractive SBN crystal by using a simple experimental setup at room temperature. We excite the system using a narrow Gaussian beam and observe different dynamical regimes tailored by the value and time rate of an applied voltage. We identify two main dynamical regimes: a caustic one for energy spreading and a speckling one for peak emergence. Our observations are well described by a two-dimensional Schr\"odinger model with saturable local nonlinearity.Comment: 4 pages, 4 figure

    To freeze or not to: Quantum correlations under local decoherence

    Full text link
    We provide necessary and sufficient conditions for freezing of quantum correlations as measured by quantum discord and quantum work deficit in the case of bipartite as well as multipartite states subjected to local noisy channels. We recognize that inhomogeneity of the magnetizations of the shared quantum states plays an important role in the freezing phenomena. We show that the frozen value of the quantum correlation and the time interval for freezing follow a complementarity relation. For states which do not exhibit "exact" freezing, but can be frozen "effectively", by having a very slow decay rate with suitable tuning of the state parameters, we introduce an index -- the freezing index -- to quantify the goodness of freezing. We find that the freezing index can be used to detect quantum phase transitions and discuss the corresponding scaling behavior.Comment: 14 pages, 9 figures, close to published version, title changed by Phys. Rev. A. to 'Freezing of quantum correlations under local decoherence
    corecore