10,200 research outputs found

    Shot-noise statistics in diffusive conductors

    Full text link
    We study the full probability distribution of the charge transmitted through a mesoscopic diffusive conductor during a measurement time T. We have considered a semi-classical model, with an exclusion principle in a discretized single-particle phase-space. In the large T limit, numerical simulations show a universal probability distribution which agrees very well with the quantum mechanical prediction of Lee, Levitov and Yakovets [PRB {51} 4079 (1995)] for the charge counting statistics. Special attention is given to its third cumulant, including an analysis of finite size effects and of some experimental constraints for its accurate measurement.Comment: Submitted to Eur. Phys. J. B (Jan. 2002

    Very low shot noise in carbon nanotubes

    Full text link
    We have performed noise measurements on suspended ropes of single wall carbon nanotubes (SWNT) between 1 and 300 K for different values of dc current through the ropes. We find that the shot noise is suppressed by more than a factor 100 compared to the full shot noise 2eI. We have also measured an individual SWNT and found a level of noise which is smaller than the minimum expected. Another finding is the very low level of 1/f noise, which is significantly lower than previous observations. We propose two possible interpretations for this strong shot noise reduction: i) Transport within a rope takes place through a few nearly ballistic tubes within a rope and possibly involves non integer effective charges. ii) A substantial fraction of the tubes conduct with a strong reduction of effective charge (by more than a factor 50).Comment: Submitted to Eur. Phys. J. B (Jan. 2002) Higher resolution pictures are posted on http://www.lps.u-psud.fr/Collectif/gr_07/publications.htm

    High mass X-ray binaries in the NIRorbital solutions of two highly obscured systems

    Get PDF
    The maximum mass of a neutron star (NS) is poorly defined. Theoretical attempts to define this mass have thus far been unsuccessful. Observational results currently provide the only means of narrowing this mass range down. Eclipsing X-ray binary (XRB) pulsar systems are the only interacting binaries in which the mass of the NS may be measured directly. Only 10 such systems are known to exist, 6 of which have yielded NS masses in the range 1.06 - 1.86 M_{\odot}.We present the first orbital solutions of two further eclipsing systems, OAO 1657-415 and EXO 1722-363, whose donor stars have only recently been identified. Using observations obtained using the VLT/ISAAC NIR spectrograph, our initial work was concerned with providing an accurate spectral classification of the two counterpart stars, leading to a consistent explanation of the mechanism for spin period evolution of OAO 1657-415. Calculating radial velocities allowed orbital solutions for both systems to be computed. These are the first accurate determinations of the NS and counterpart masses in XRB pulsar systems to be made employing NIR spectroscopy.Comment: 5 pages, 3 figures, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201

    A tunable, dual mode field-effect or single electron transistor

    Full text link
    A dual mode device behaving either as a field-effect transistor or a single electron transistor (SET) has been fabricated using silicon-on-insulator metal oxide semiconductor technology. Depending on the back gate polarisation, an electron island is accumulated under the front gate of the device (SET regime), or a field-effect transistor is obtained by pinching off a bottom channel with a negative front gate voltage. The gradual transition between these two cases is observed. This dual function uses both vertical and horizontal tunable potential gradients in non-overlapped silicon-on-insulator channel

    Resolution-enhanced Mapping Spectrometer

    Get PDF
    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound

    Effect of interactions on the noise of chiral Luttinger liquid systems

    Full text link
    We analyze the current noise, generated at a quantum point contact in fractional quantum Hall edge state devices, using the chiral Luttinger liquid model with an impurity and the associated exact field theoretic solution. We demonstrate that an experimentally relevant regime of parameters exists where the noise coincides with the partition noise of independent Laughlin quasiparticles. However, outside of this regime, this independent particle picture breaks down and the inclusion of interaction effects is essential to understand the shot noise.Comment: 4 pages, 3 figures; v2: modified FIG.1, new FIG.

    Environmental effects in the third moment of voltage fluctuations in a tunnel junction

    Full text link
    We present the first measurements of the third moment of the voltage fluctuations in a conductor. This technique can provide new and complementary information on the electronic transport in conducting systems. The measurement was performed on non-superconducting tunnel junctions as a function of voltage bias, for various temperatures and bandwidths up to 1GHz. The data demonstrate the significant effect of the electromagnetic environment of the sample.Comment: Major revision. More experimental results. New interpretation. 4 pages, 3 figure

    Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes

    Full text link
    Magnetotransport measurements in large diameter multiwall carbon nanotubes (20-40 nm) demonstrate the competition of a magnetic-field dependent bandstructure and Altshuler-Aronov-Spivak oscillations. By means of an efficient capacitive coupling to a backgate electrode, the magnetoconductance oscillations are explored as a function of Fermi level shift. Changing the magnetic field orientation with respect to the tube axis and by ensemble averaging, allows to identify the contributions of different Aharonov-Bohm phases. The results are in qualitative agreement with numerical calculations of the band structure and the conductance.Comment: 4 figures, 5 page
    corecore