2,200 research outputs found
Normalised Root Mean Square and Amplitude of Sidebands of Vibration Response as Tools for Gearbox Diagnosis
Quick assessment of the condition of gearboxes used in helicopters is a safety requirement. One of the most widely used helicopter on-board-mounted condition monitoring system these days is the Health and Usage Monitoring System. It has been specifically designed to monitor the condition of all safety-critical components operating in the helicopter through calculation of so-called condition indicators (CIs) - signal processing routines designed to output a single number that represents the condition of the monitored component. Among number of available parameters, there is a couple of CIs that over the years of testing have earned a reputation of being the most reliable measures of the gear tooth condition. At the same time, however, it has been observed that in some cases, those techniques do not properly indicate the deteriorating condition with the propagation of a gear tooth fault with the period of operation. Hence, three more robust methods have been suggested, which are discussed in this article
Expand+Functional selection and systematic analysis of intronic splicing elements identify active sequence motifs and associated splicing factors
Despite the critical role of pre-mRNA splicing in generating proteomic diversity and regulating gene expression, the sequence composition and function of intronic splicing regulatory elements (ISREs) have not been well elucidated. Here, we employed a high-throughput in vivo Screening PLatform for Intronic Control Elements (SPLICE) to identify 125 unique ISRE sequences from a random nucleotide library in human cells. Bioinformatic analyses reveal consensus motifs that resemble splicing regulatory elements and binding sites for characterized splicing factors and that are enriched in the introns of naturally occurring spliced genes, supporting their biological relevance. In vivo characterization, including an RNAi silencing study, demonstrate that ISRE sequences can exhibit combinatorial regulatory activity and that multiple trans-acting factors are involved in the regulatory effect of a single ISRE. Our work provides an initial examination into the sequence characteristics and function of ISREs, providing an important contribution to the splicing code
Ultra-broadband photon pair preparation by spontaneous four wave mixing in dispersion-engineered optical fiber
We present a study of the spectral properties of photon pairs generated
through the process of spontaneous four wave mixing (SFWM) in single mode
fiber. Our analysis assumes narrowband pumps, which are allowed to be
frequency-degenerate or non-degenerate. Based on this analysis, we derive
conditions on the pump frequencies and on the fiber dispersion parameters which
guarantee the generation of ultra-broadband photon pairs. Such photon pairs are
characterized by: i) a very large degree of entanglement, and ii) a very high
degree of temporal synchronization between the signal and idler photons.
Through a numerical exercise, we find that the use of photonic crystal fiber
(PCF) facilitates the fulfilment of the conditions for ultra-broadband photon
pair generation; in particular, the spectral region in which emission occurs
can be adjusted to particular needs through an appropriate choice of the PCF
parameters. In addition, we present a novel quantum interference effect,
resulting from indistinguishable pathways to the same outcome, which can occur
when pumping a SFWM source with multiple spectral lines.Comment: 15 pages, 10 figures. To be published in Phys. Rev.
Language difficulties in first year Science
A key goal of the study entitled ‘A cross-disciplinary approach to language support for first year students in the science disciplines’, funded by the Carrick Institute for Learning and Teaching in Higher Education, is to examine the role of language in the learning of science by first-year university students. The disciplines involved are Physics, Chemistry and Biology. This national project also aims to transfer active learning skills, which are widely used in language teaching, to the teaching of science in first year. The paper discusses the background to the study, reports on some of the preliminary results on the language difficulties faced by first year student cohorts in science from data collected in 2008, and describes the framework we have established for the organization and delivery of first year science courses to be implemented in semester one 2009
Delayed Photoionization Feedback in a Super Star Cluster in SBS0335-052E
SBS0335-052 is a well studied Blue Compact Dwarf galaxy with one of the
lowest metallicities of any known galaxy. It also contains 6 previously
identified Super Star Clusters. We combine archival HST NICMOS images in the Pa
alpha line and the 1.6 micron continuum of the eastern component, SBS0335-052E,
with other space and ground based data to perform a multi-wavelength analysis
of the super star clusters. We concentrate on the southern most clusters,
designated S1 and S2, which appear to be the youngest clusters and are the
strongest emitters of Pa alpha, radio, and x-ray flux. Our analysis leads to a
possible model for S1 and perhaps S2 as a cluster of very young, massive stars
with strong stellar winds. The wind density can be high enough to absorb the
majority of ionizing photons within less than 1000 AU of the stars, creating
very compact HII regions that emit optically thick radiation at radio
wavelengths. These winds would then effectively quench the photoionizing flux
very close to the stars. This can delay the onset of negative feedback by
photoionization and photodissociation on star formation in the clusters. This
is significant since SBS0335-052E resembles the conditions that were probably
common for high redshift star formation in galaxies near the epoch of
reionization.Comment: Accepted for publication in the Astrophysical Journa
Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100-300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone. Key Points Measured and calculated hiss Bw from POES electron measurements agree well Electron ratio measured by POES is able to estimate hiss wave intensity This technique can be used to provide global hiss wave distributio
Integrating language learning practises in first year science disciplines
Student retention and progression rates are a matter of concern for most institutions in the higher education sector (Burton & Dowling, 2005;. Simpson, 2006;. Tinto & Pusser, 2006) in Australia. There is also a substantial body of literature concentrating on the first year experience at university (for example, in the Australian context, see Krause, Hartley, James, McInnis, & Centre for the Study of Higher Education. University of Melbourne, 2005). One of the particular concerns is that the diversity of the student body is rapidly increasing. Of course, with diversity comes with differentiated level of preparation for academic study within the student body
High-resolution in situ observations of electron precipitation-causing EMIC waves
Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. These observations will better constrain modeling into the importance of EMIC wave-particle interactions
Embedding in-discipline language support for first year students in the sciences
This paper reports on a project which aims at addressing the need to cater for the language needs of a diverse student body (both domestic and international student body) by embedding strategic approaches to learning and teaching in first year sciences in tertiary education. These strategies consist of active learning skills which are widely used in language learning. The disciplines covered by the project are Biology, Chemistry and Physics and involves the University of Canberra (UC), University of Sydney (USyd), University of Tasmania (UTAS), University of Technology, Sydney (UTS) and University of Newcastle (Newcastle) in Australia. This project is funded by the Australian Learning and Teaching Council (ALTC). The paper discusses the background to the study and reports on results on the language difficulties faced by first year science student cohorts from data collected in 2008 as well as qualitative data was also collected on 2008 students’ attitudes towards online science learning. It will also report on the results on the implementation of the learning strategies at UTS and UTAS in Physics and Chemistry disciplines in 2009. Keywords: First year science teaching, role of language in science teaching, active learning skill
- …
