456 research outputs found

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed

    Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide

    Full text link
    Understanding the influence of macromolecular crowding and nanoparticles on the formation of in-register β\beta-sheets, the primary structural component of amyloid fibrils, is a first step towards describing \emph{in vivo} protein aggregation and interactions between synthetic materials and proteins. Using all atom molecular simulations in implicit solvent we illustrate the effects of nanoparticle size, shape, and volume fraction on oligomer formation of an amyloidogenic peptide from the transthyretin protein. Surprisingly, we find that inert spherical crowding particles destabilize in-register β\beta-sheets formed by dimers while stabilizing β\beta-sheets comprised of trimers and tetramers. As the radius of the nanoparticle increases crowding effects decrease, implying smaller crowding particles have the largest influence on the earliest amyloid species. We explain these results using a theory based on the depletion effect. Finally, we show that spherocylindrical crowders destabilize the ordered β\beta-sheet dimer to a greater extent than spherical crowders, which underscores the influence of nanoparticle shape on protein aggregation

    Nutritional strategies of high level natural bodybuilders during competition preparation

    Get PDF
    Background Competitive bodybuilders employ a combination of resistance training, cardiovascular exercise, calorie reduction, supplementation regimes and peaking strategies in order to lose fat mass and maintain fat free mass. Although recommendations exist for contest preparation, applied research is limited and data on the contest preparation regimes of bodybuilders are restricted to case studies or small cohorts. Moreover, the influence of different nutritional strategies on competitive outcome is unknown. Methods Fifty-one competitors (35 male and 16 female) volunteered to take part in this project. The British Natural Bodybuilding Federation (BNBF) runs an annual national competition for high level bodybuilders; competitors must qualify by winning at a qualifying events or may be invited at the judge’s discretion. Competitors are subject to stringent drug testing and have to undergo a polygraph test. Study of this cohort provides an opportunity to examine the dietary practices of high level natural bodybuilders. We report the results of a cross-sectional study of bodybuilders competing at the BNBF finals. Volunteers completed a 34-item questionnaire assessing diet at three time points. At each time point participants recorded food intake over a 24-h period in grams and/or portions. Competitors were categorised according to contest placing. A “placed” competitor finished in the top 5, and a “Non-placed” (DNP) competitor finished outside the top 5. Nutrient analysis was performed using Nutritics software. Repeated measures ANOVA and effect sizes (Cohen’s d) were used to test if nutrient intake changed over time and if placing was associated with intake. Results Mean preparation time for a competitor was 22 ± 9 weeks. Nutrient intake of bodybuilders reflected a high-protein, high-carbohydrate, low-fat diet. Total carbohydrate, protein and fat intakes decreased over time in both male and female cohorts (P < 0.05). Placed male competitors had a greater carbohydrate intake at the start of contest preparation (5.1 vs 3.7 g/kg BW) than DNP competitors (d = 1.02, 95% CI [0.22, 1.80]). Conclusions Greater carbohydrate intake in the placed competitors could theoretically have contributed towards greater maintenance of muscle mass during competition preparation compared to DNP competitors. These findings require corroboration, but will likely be of interest to bodybuilders and coaches. Keywords BodybuildersCaloriesCompetitionContest preparationDietingEnergy restrictionNaturalNutritionSupplementationPhysiqu

    Diastereoselective Synthesis of the HIV Protease Inhibitor Darunavir and Related Derivatives via a Titanium Tetrachloride-Mediated Asymmetric Glycolate Aldol Addition Reaction

    Get PDF
    Darunavir is a potent HIV protease inhibitor that has been established as an effective tool in the fight against the progression of HIV/AIDS in the global community. The successful application of this drug has spurred the development of derivatives wherein strategic regions (e.g., P1, P1’, P2, and P2’) of the darunavir framework have been structurally modified. An alternate route for the synthesis of darunavir and three related P1 and P1’ derivatives has been developed. This synthetic pathway involves the use of a Crimmins titanium tetrachloride-mediated oxazolidine-2-thione-guided asymmetric glycolate aldol addition reaction. The resultant aldol adduct introduces the P1 fragment of darunavir via an aldehyde. Transamidation with a selected amine (isobutylamine or 2-ethyl-1-butylamine) to cleave the auxiliary yields an amide wherein the P1’ component is introduced. From this stage, the amide is reduced to the corresponding β-amino alcohol and the substrate is then bis-nosylated to introduce the requisite p-nitrobenzenesulfonamide component and activate the secondary alcohol for nucleophilic substitution. Treatment with sodium azide yielded the desired azides, and the deprotection of the p-methoxyphenoxy group is achieved with the use of ceric ammonium nitrate. Finally, hydrogenation to reduce both the aniline and azide functionalities with concurrent acylation yields darunavir and its derivatives

    Search for pairs of highly collimated photon-jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Results of a search for the pair production of photon-jets—collimated groupings of photons—in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7  fb−1, were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, X, that decays into pairs of photon-jets via new, light particles, a. Upper limits are placed on the cross section times the product of branching ratios σ×B(X→aa)×B(a→γγ)2 for 200  GeV<mX<2  TeV and for ranges of ma from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon mX. Upper limits are also placed on σ×B(X→aa)×B(a→3π0)2 for the same range of mX and for ranges of ma from a lower mass of 500 MeV up to between 2 and 10 GeV

    The Mechanism of Substrate Inhibition in Human Indoleamine 2,3-Dioxygenase

    Get PDF
    Indoleamine 2,3-dioxygenase catalyzes the O(2)-dependent oxidation of L-tryptophan (L-Trp) to N-formylkynurenine (NFK) as part of the kynurenine pathway. Inhibition of enzyme activity at high L-Trp concentrations was first noted more than 30 years ago, but the mechanism of inhibition has not been established. Using a combination of kinetic and reduction potential measurements, we present evidence showing that inhibition of enzyme activity in human indoleamine 2,3-dioxygenase (hIDO) and a number of site-directed variants during turnover with L-tryptophan (L-Trp) can be accounted for by the sequential, ordered binding of O(2) and L-Trp. Analysis of the data shows that at low concentrations of L-Trp, O(2) binds first followed by the binding of L-Trp; at higher concentrations of L-Trp, the order of binding is reversed. In addition, we show that the heme reduction potential (E(m)(0)) has a regulatory role in controlling the overall rate of catalysis (and hence the extent of inhibition) because there is a quantifiable correlation between E(m)(0) (that increases in the presence of L-Trp) and the rate constant for O(2) binding. This means that the initial formation of ferric superoxide (Fe(3+)-O(2)(•-)) from Fe(2+)-O(2) becomes thermodynamically less favorable as substrate binds, and we propose that it is the slowing down of this oxidation step at higher concentrations of substrate that is the origin of the inhibition. In contrast, we show that regeneration of the ferrous enzyme (and formation of NFK) in the final step of the mechanism, which formally requires reduction of the heme, is facilitated by the higher reduction potential in the substrate-bound enzyme and the two constants (k(cat) and E(m)(0)) are shown also to be correlated. Thus, the overall catalytic activity is balanced between the equal and opposite dependencies of the initial and final steps of the mechanism on the heme reduction potential. This tuning of the reduction potential provides a simple mechanism for regulation of the reactivity, which may be used more widely across this family of enzymes

    Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment

    Get PDF
    Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils

    The Associations of Maternal Health Characteristics, Newborn Metabolite Concentrations, and Child Body Mass Index among US Children in the ECHO Program

    Get PDF
    We aimed first to assess associations between maternal health characteristics and newborn metabolite concentrations and second to assess associations between metabolites associated with maternal health characteristics and child body mass index (BMI). This study included 3492 infants enrolled in three birth cohorts with linked newborn screening metabolic data. Maternal health characteristics were ascertained from questionnaires, birth certificates, and medical records. Child BMI was ascertained from medical records and study visits. We used multivariate analysis of variance, followed by multivariable linear/proportional odds regression, to determine maternal health characteristic-newborn metabolite associations. Significant associations were found in discovery and replication cohorts of higher pre-pregnancy BMI with increased C0 and higher maternal age at delivery with increased C2 (C0: discovery: aβ 0.05 [95% CI 0.03, 0.07]; replication: aβ 0.04 [95% CI 0.006, 0.06]; C2: discovery: aβ 0.04 [95% CI 0.003, 0.08]; replication: aβ 0.04 [95% CI 0.02, 0.07]). Social Vulnerability Index, insurance, and residence were also associated with metabolite concentrations in a discovery cohort. Associations between metabolites associated with maternal health characteristics and child BMI were modified from 1–3 years (interaction: p < 0.05). These findings may provide insights on potential biologic pathways through which maternal health characteristics may impact fetal metabolic programming and child growth patterns

    Performance of electron and photon triggers in ATLAS during LHC Run 2

    Get PDF
    Electron and photon triggers covering transverseenergies from 5 GeV to several TeV are essential for theATLAS experiment to record signals for a wide variety ofphysics: from Standard Model processes to searches for newphenomena in both proton–proton and heavy-ion collisions.To cope with a fourfold increase of peak LHC luminosityfrom 2015 to 2018 (Run 2), to 2.1×1034cm−2s−1, anda similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections wereoptimised to control the rates while retaining a high effi-ciency for physics analyses. For proton–proton collisions, thesingle-electron trigger efficiency relative to a single-electronoffline selection is at least 75% for an offline electron of31 GeV, and rises to 96% at 60 GeV; the trigger efficiency ofa 25 GeV leg of the primary diphoton trigger relative to a tightoffline photon selection is more than 96% for an offline pho-ton of 30 GeV. For heavy-ion collisions, the primary electronand photon trigger efficiencies relative to the correspondingstandard offline selections are at least 84% and 95%, respec-tively, at 5 GeV above the corresponding trigger threshold

    A measurement of material in the ATLAS tracker using secondary hadronic interactions in 7 TeV<i> pp</i> collisions

    Get PDF
    Knowledge of the material in the ATLAS inner tracking detector is crucial in understanding the reconstruction of charged-particle tracks, the performance of algorithms that identify jets containing b-hadrons and is also essential to reduce background in searches for exotic particles that can decay within the inner detector volume. Interactions of primary hadrons produced in pp collisions with the material in the inner detector are used to map the location and amount of this material. The hadronic interactions of primary particles may result in secondary vertices, which in this analysis are reconstructed by an inclusive vertex-finding algorithm. Data were collected using minimum-bias triggers by the ATLAS detector operating at the LHC during 2010 at centre-of-mass energy √s = 7 TeV, and correspond to an integratedluminosity of 19 nb−1. Kinematic properties of these secondary vertices are used to study the validity of the modelling of hadronic interactions in simulation. Secondary-vertex yields are compared between data and simulation over a volume of about 0.7 m3around the interaction point, and agreement is found within overall uncertainties
    corecore