804 research outputs found
An atomic interface between microwave and optical photons
A complete physical approach to quantum information requires a robust
interface among flying qubits, long-lifetime memory and computational qubits.
Here we present a unified interface for microwave and optical photons,
potentially connecting engineerable quantum devices such as superconducting
qubits at long distances through optical photons. Our approach uses an
ultracold ensemble of atoms for two purposes: quantum memory and to transduce
excitations between the two frequency domains. Using coherent control
techniques, we examine an approach for converting and storing quantum
information between microwave photons in superconducting resonators, ensembles
of ultracold atoms, and optical photons as well as a method for transferring
information between two resonators.Comment: 5 pages, 3 figure
Effects of elevated CO2 and temperature on seed quality
Successful crop production depends initially on the availability of high-quality seed. By 2050 global climate change will have influenced crop yields, but will these changes affect seed quality? The present review examines the effects of elevated carbon dioxide (CO2) and temperature during seed production on three seed quality components: seed mass, germination and seed vigour. In response to elevated CO2, seed mass has been reported to both increase and decrease in C3 plants, but not change in C4 plants. Increases are greater in legumes than non-legumes, and there is considerable variation among species. Seed mass increases may result in a decrease of seed nitrogen (N) concentration in non-legumes. Increasing temperature may decrease seed mass because of an accelerated growth rate and reduced seed filling duration, but lower seed mass does not necessarily reduce seed germination or vigour. Like seed mass, reported seed germination responses to elevated CO2 have been variable. The reported changes in seed C/N ratio can decrease seed protein content which may eventually lead to reduced viability. Conversely, increased ethylene production may stimulate germination in some species. High-temperature stress before developing seeds reach physiological maturity (PM) can reduce germination by inhibiting the ability of the plant to supply the assimilates necessary to synthesize the storage compounds required for germination. Nothing is known concerning the effects of elevated CO2 on seed vigour. However, seed vigour can be reduced by high-temperature stress both before and after PM. High temperatures induce or increase the physiological deterioration of seeds. Limited evidence suggests that only short periods of high-temperature stress at critical seed development stages are required to reduce seed vigour, but further research is required. The predicted environmental changes will lead to losses of seed quality, particularly for seed vigour and possibly germination. The seed industry will need to consider management changes to minimize the risk of this occurring
Coherence properties of an atom laser
We study the coherence properties of an atom laser, which operates by
extracting atoms from a gaseous Bose-Einstein condensate via a two-photon Raman
process, by analyzing a recent experiment. We obtain good agreement with the
experimental data by solving the time-dependent Gross-Pitaevskii equation in
three dimensions both numerically and with a Thomas-Fermi model. The coherence
length is strongly affected by the space-dependent phase developed by the
condensate when the trapping potential is turned off.Comment: 11 pages, 2 Postscript figure
A single hollow beam optical trap for cold atoms
We present an optical trap for atoms that we have developed for precision
spectroscopy measurements. Cold atoms are captured in a dark region of space
inside a blue-detuned hollow laser beam formed by an axicon. We analyze the
light potential in a ray optics picture and experimentally demonstrate trapping
of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure
Imaging the evolution of an ultracold strontium Rydberg gas
Clouds of ultracold strontium 5s48s1S0 or 5s47d1D2 Rydberg atoms are created by two-photon excitation of laser-cooled 5s21S0 atoms. The spontaneous evolution of the cloud of low orbital angular momentum (low-ℓ) Rydberg states towards an ultracold neutral plasma is observed by imaging resonant light scattered from core ions, a technique that provides both spatial and temporal resolution. Evolution is observed to be faster for the S states, which display isotropic attractive interactions, than for the D states, which exhibit anisotropic, principally repulsive interactions. Immersion of the atoms in a dilute ultracold neutral plasma speeds up the evolution and allows the number of Rydberg atoms initially created to be determined
Hydrodynamic excitations of trapped dipolar fermions
A single-component Fermi gas of polarized dipolar particles in a harmonic
trap can undergo a mechanical collapse due to the attractive part of the
dipole-dipole interaction. This phenomenon can be conveniently manipulated by
the shape of the external trapping potential. We investigate the signatures of
the instability by studying the spectrum of low-lying collective excitations of
the system in the hydrodynamic regime. To this end, we employ a time-dependent
variational method as well as exact numerical solutions of the hydrodynamic
equations of the system.Comment: 4 pages, 2 eps figures, final versio
- …
