635 research outputs found
Algorithmic and technical improvements: Optimal solutions to the (Generalized) Multi-Weber Problem
Rosing has recently demonstrated a new method for obtaining optimal solutions to the (Generalized) Multi-Weber Problem and proved the optimality of the results. The method develops all convex hulls and then covers the destinations with disjoint convex hulls. This paper seeks to improve implementation of the algorithm to make such solutions economically attractive. Four areas are considered: sharper decision rules to eliminate unnecessary searching, bit pattern matching as a method of recording a history and eliminating duplication, vector intrinsic functions to speed up comparisons, and profiling a program to maximize operating efficiency. Computational experience is also presented
Deployment status of the Las Cumbres Observatory Global Telescope
Our global network of telescopes is designed to provide maximally available optical monitoring of time variable sources, from solar system to extra-galactic objects, and ranging in brightness from about 7-20m. We are providing a distributed network with varied apertures but homogeneous instrumentation: optical imaging, with spectroscopic capabilities. A key component is a single centralized process that accepts (in real time) and schedules TAC approved observing requests across the network; then continuously updates schedules based on status, weather and other availability criteria. Requests range from occasional to continuous monitoring, at slow to high-speed cadences (imaging and fast photometry), and includes rapid response to targets of opportunity. Each node of the network must be fully autonomous, with software agents to control and monitor all functions, to provide auto-recovery as necessary, and to announce their status and capabilities up the control structure. Real-time monitoring or interaction by humans should be infrequent. Equipment is designed to be reliable over long periods to minimize hands-on maintenance, by local or LCOGT staff. Our first 1m deployment was to McDonald Obs. in April 2012. Eight more 1m telescopes are close to deployment to complete the Southern ring, scheduled by end-2012
Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 847–855, doi:10.1029/2012JC008354.Interaction of warm, Atlantic-origin water (AW) and colder, polar origin water (PW) advecting southward in the East Greenland Current (EGC) influences the heat content of water entering Greenland's outlet glacial fjords. Here we use depth and temperature data derived from deep-diving seals to map out water mass variability across the continental shelf and to augment existing bathymetric products. We compare depths derived from the seal dives with the IBCAO Version 3 bathymetric database over the shelf and find differences up to 300 m near several large submarine canyons. In the vertical temperature structure, we find two dominant modes: a cold mode, with the typical AW/PW layering observed in the EGC, and a warm mode, where AW is present throughout the water column. The prevalence of these modes varies seasonally and spatially across the continental shelf, implying distinct AW pathways. In addition, we find that satellite sea surface temperatures (SST) correlate significantly with temperatures in the upper 50 m (R = 0.54), but this correlation decreases with depth (R = 0.22 at 200 m), and becomes insignificant below 250 m. Thus, care must be taken in using SST as a proxy for heat content, as AW mainly resides in these deeper layers.Funding for this work came from National
Science Foundation OPP grant 0909373 and OCE grant 1130008, plus the
WHOI Arctic Research Initiative. The Greenland Institute of Natural
Resources and the Department of Fisheries and Oceans, Canada, supported
the seal tagging logistics.2013-08-2
The Palomar Transient Factory: System Overview, Performance and First Results
The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey
aimed at a systematic exploration of the optical transient sky. The transient
survey is performed using a new 8.1 square degree camera installed on the
48-inch Samuel Oschin telescope at Palomar Observatory; colors and light curves
for detected transients are obtained with the automated Palomar 60-inch
telescope. PTF uses eighty percent of the 1.2-m and fifty percent of the 1.5-m
telescope time. With an exposure of 60-s the survey reaches a depth of
approximately 21.3 in g' and 20.6 in R (5 sigma, median seeing). Four major
experiments are planned for the five-year project: 1) a 5-day cadence supernova
search; 2) a rapid transient search with cadences between 90 seconds and 1 day;
3) a search for eclipsing binaries and transiting planets in Orion; and 4) a
3-pi sr deep H-alpha survey. PTF provides automatic, realtime transient
classification and follow up, as well as a database including every source
detected in each frame. This paper summarizes the PTF project, including
several months of on-sky performance tests of the new survey camera, the
observing plans and the data reduction strategy. We conclude by detailing the
first 51 PTF optical transient detections, found in commissioning data.Comment: 12 pages, 11 figures, 3 tables, submitted to PAS
Recommended from our members
Efficient Language Constructs for Large Parallel Programs -- An Overview of Dino 2 ; CU-CS-578-92
Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event
The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen
Recommended from our members
Scientific Programming Languages for Distributed Memory Multiprocessors: Paradigms and Research Issues ; CU-CS-537-91
Gut evacuation rate and grazing impact of the krill Thysanoessa raschii and T. inermis
Gut evacuation rates and ingestion rates were measured for the krill Thysanoessa raschii and T. inermis in Godthåbsfjord, SW Greenland. Combined with biomass of the krill community, the grazing potential on phytoplankton along the fjord was estimated. Gut evacuation rates were 3.9 and 2.3 h−1 for T. raschii and T. inermis, respectively. Ingestion rates were 12.2 ± 7.5 µg C mg C−1 day−1 (n = 4) for T. inermis and 4.9 ± 3.2 µg C mg C−1 day−1 (n = 4) for T. raschii, corresponding to daily rations of 1.2 and 0.5 % body carbon day−1. Clearance experiments conducted in parallel to the gut evacuation experiment gave similar results for ingestion rates and daily rations. Krill biomass was highest in the central part of the fjord’s length, with T. raschii dominating. Community grazing rates from krill and copepods were comparable; however, their combined impact was low, estimated as <1 % of phytoplankton standing stock being removed per day during this late spring study
Recommended from our members
Massive Parallelism and Process Contraction in DINO ; CU-CS-467-90
- …
