541 research outputs found
Observation of the lowest energy gamma-ray in any superdeformed nucleus : 196Bi
New results on the superdeformed Bi nucleus a re reported. We have
observed with the EUROBALL IV -ray spectrometer array a superdeformed
trans ition of 124 keV which is the lowest observed energy -ray in any
superdeformed nucleus. We have de velopped microscopic cranked
Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a
realistic surface p airing which strongly support the
([651]1/2[752]5/2) assignment of this su
perdeformed band
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Identification of evolutionarily conserved exons as regulated targets for the splicing activator Tra2β in development
Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10 fl/fl; Nestin-Cre tg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein. © 2011 Grellscheid et al
One-dimensional Model of a Gamma Klystron
A new scheme for amplification of coherent gamma rays is proposed. The key
elements are crystalline undulators - single crystals with periodically bent
crystallographic planes exposed to a high energy beam of charged particles
undergoing channeling inside the crystals. The scheme consists of two such
crystals separated by a vacuum gap. The beam passes the crystals successively.
The particles perform undulator motion inside the crystals following the
periodic shape of the crystallographic planes. Gamma rays passing the crystals
parallel to the beam get amplified due to interaction with the particles inside
the crystals. The term `gamma klystron' is proposed for the scheme because its
operational principles are similar to those of the optical klystron. A more
simple one-crystal scheme is considered as well for the sake of comparison. It
is shown that the gamma ray amplification in the klystron scheme can be reached
at considerably lower particle densities than in the one-crystal scheme,
provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure
The Cold Peace: Russo-Western Relations as a Mimetic Cold War
In 1989–1991 the geo-ideological contestation between two blocs was swept away, together with the ideology of civil war and its concomitant Cold War played out on the larger stage. Paradoxically, while the domestic sources of Cold War confrontation have been transcended, its external manifestations remain in the form of a ‘legacy’ geopolitical contest between the dominant hegemonic power (the United States) and a number of potential rising great powers, of which Russia is one. The post-revolutionary era is thus one of a ‘cold peace’. A cold peace is a mimetic cold war. In other words, while a cold war accepts the logic of conflict in the international system and between certain protagonists in particular, a cold peace reproduces the behavioural patterns of a cold war but suppresses acceptance of the logic of behaviour. A cold peace is accompanied by a singular stress on notions of victimhood for some and undigested and bitter victory for others. The perceived victim status of one set of actors provides the seedbed for renewed conflict, while the ‘victory’ of the others cannot be consolidated in some sort of relatively unchallenged post-conflict order. The ‘universalism’ of the victors is now challenged by Russia's neo-revisionist policy, including not so much the defence of Westphalian notions of sovereignty but the espousal of an international system with room for multiple systems (the Schmittean pluriverse)
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Analysis of factors affecting selection and design of air-cooled single-stage turbine for turbojet engines I : turbine performance and engine weight-flow capacity
First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength
We present the first observation of Self-Amplified Spontaneous Emission
(SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109
nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and
the radiation characteristics, such as dependency on bunch charge, angular
distribution, spectral width and intensity fluctuations all corroborate the
existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Simulation results for future measurements of electromagnetic proton form
factors at \PANDA (FAIR) within the PandaRoot software framework are reported.
The statistical precision with which the proton form factors can be determined
is estimated. The signal channel is studied on the basis
of two different but consistent procedures. The suppression of the main
background channel, , is studied.
Furthermore, the background versus signal efficiency, statistical and
systematical uncertainties on the extracted proton form factors are evaluated
using two different procedures. The results are consistent with those of a
previous simulation study using an older, simplified framework. However, a
slightly better precision is achieved in the PandaRoot study in a large range
of momentum transfer, assuming the nominal beam conditions and detector
performance
- …
