4,062 research outputs found
High coherence hybrid superconducting qubit
We measure the coherence of a new superconducting qubit, the {\em
low-impedance flux qubit}, finding s. It is a
three-junction flux qubit, but the ratio of junction critical currents is
chosen to make the qubit's potential have a single well form. The low impedance
of its large shunting capacitance protects it from decoherence. This qubit has
a moderate anharmonicity, whose sign is reversed compared with all other
popular qubit designs. The qubit is capacitively coupled to a high-Q resonator
in a configuration, which permits the qubit's state to be read out
dispersively
A simple all-microwave entangling gate for fixed-frequency superconducting qubits
We demonstrate an all-microwave two-qubit gate on superconducting qubits
which are fixed in frequency at optimal bias points. The gate requires no
additional subcircuitry and is tunable via the amplitude of microwave
irradiation on one qubit at the transition frequency of the other. We use the
gate to generate entangled states with a maximal extracted concurrence of 0.88
and quantum process tomography reveals a gate fidelity of 81%
Tremor in motor neuron disease may be central rather than peripheral in origin
BACKGROUND AND PURPOSE:
Motor neuron disease (MND) refers to a spectrum of degenerative diseases affecting motor neurons. Recent clinical and post-mortem observations have revealed considerable variability in the phenotype. Rhythmic involuntary oscillations of the hands during action, resembling tremor, can occur in MND, but their pathophysiology has not yet been investigated.
METHODS:
A total of 120 consecutive patients with MND were screened for tremor. Twelve patients with action tremor and no other movement disorders were found. Ten took part in the study. Tremor was recorded bilaterally using surface electromyography (EMG) and triaxial accelerometer, with and without a variable weight load. Power spectra of rectified EMG and accelerometric signal were calculated. To investigate a possible cerebellar involvement, eyeblink classic conditioning was performed in five patients.
RESULTS:
Action tremor was present in about 10% of our population. All patients showed distal postural tremor of low amplitude and constant frequency, bilateral with a small degree of asymmetry. Two also showed simple kinetic tremor. A peak at the EMG and accelerometric recordings ranging from 4 to 12 Hz was found in all patients. Loading did not change peak frequency in either the electromyographic or accelerometric power spectra. Compared with healthy volunteers, patients had a smaller number of conditioned responses during eyeblink classic conditioning.
CONCLUSIONS:
Our data suggest that patients with MND can present with action tremor of a central origin, possibly due to a cerebellar dysfunction. This evidence supports the novel idea of MND as a multisystem neurodegenerative disease and that action tremor can be part of this condition
Searching for "monogenic diabetes" in dogs using a candidate gene approach
BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users
Protecting superconducting qubits from external sources of loss and heat
We characterize a superconducting qubit before and after embedding it along
with its package in an absorptive medium. We observe a drastic improvement in
the effective qubit temperature and over a tenfold improvement in the
relaxation time up to 5.7 s. Our results suggest the presence of external
radiation inside the cryogenic apparatus can be a limiting factor for both
qubit initialization and coherence. We infer from simple calculations that
relaxation is not limited by thermal photons in the sample prior to embedding,
but by dissipation arising from quasiparticle generation.Comment: 3 figure
Efficient measurement of quantum gate error by interleaved randomized benchmarking
We describe a scalable experimental protocol for obtaining estimates of the
error rate of individual quantum computational gates. This protocol, in which
random Clifford gates are interleaved between a gate of interest, provides a
bounded estimate of the average error of the gate under test so long as the
average variation of the noise affecting the full set of Clifford gates is
small. This technique takes into account both state preparation and measurement
errors and is scalable in the number of qubits. We apply this protocol to a
superconducting qubit system and find gate errors that compare favorably with
the gate errors extracted via quantum process tomography.Comment: 5 pages, 2 figures, published versio
Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation
We report a system where fixed interactions between non-computational levels
make bright the otherwise forbidden two-photon 00 --> 11 transition. The system
is formed by hand selection and assembly of two discrete component
transmon-style superconducting qubits inside a rectangular microwave cavity.
The application of a monochromatic drive tuned to this transition induces
two-photon Rabi-like oscillations between the ground and doubly-excited states
via the Bell basis. The system therefore allows all-microwave two-qubit
universal control with the same techniques and hardware required for single
qubit control. We report Ramsey-like and spin echo sequences with the generated
Bell states, and measure a two-qubit gate fidelity of 90% (unconstrained) and
86% (maximum likelihood estimator).Comment: 5 pages, 4 figures. V2: add supplemental material about the
Schrieffer-Wolff transformatio
An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation?
Evidence in animal stroke models suggests that neuroplasticity takes place maximally in a specific time window after an ischaemic lesion, which may coincide with the optimal time to intervene with rehabilitation. The aim of this study is to investigate neurophysiological evidence for a "critical window" of enhanced neuroplasticity in patients following ischaemic stroke, and establish its duration. We will also investigate changes in cortical inhibition following stroke, and the influence this has on functional recovery
Superconducting qubit in waveguide cavity with coherence time approaching 0.1ms
We report a superconducting artificial atom with an observed quantum
coherence time of T2*=95us and energy relaxation time T1=70us. The system
consists of a single Josephson junction transmon qubit embedded in an otherwise
empty copper waveguide cavity whose lowest eigenmode is dispersively coupled to
the qubit transition. We attribute the factor of four increase in the coherence
quality factor relative to previous reports to device modifications aimed at
reducing qubit dephasing from residual cavity photons. This simple device holds
great promise as a robust and easily produced artificial quantum system whose
intrinsic coherence properties are sufficient to allow tests of quantum error
correction
LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit.
Voltage-gated Ca(2+) (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits
- …
