797 research outputs found
Management zone delineation using a modified watershed algorithm
Le zonage intra-parcellaire est une méthode couramment utilisée pour gérer la variabilité intra-parcellaire. Ce concept consiste à partitionner une parcelle en zones de management selon une ou plusieurs caractéristiques du sol et/ou du couvert végétal de cette parcelle. Cet article propose une méthode de zonage originale, basée sur l'utilisation d'une méthode de segmentation d'image puissante et rapide : l'algorithme de ligne de partage des eaux. Cet algorithme d'analyse d'image a été adapté aux spécificités de l'agriculture de précision. Les performances de notre méthodes ont été testées sur des cartes biophysiques haute résolution de plusieurs champs de blé situés en Bourgogne. / Site-specific management (SSM) is a common way to manage within-field variability. This concept divides fields into site-specific management zones (SSMZ) according to one or several soil or crop characteristics. This paper proposes an original methodology for SSMZ delineation which is able to manage different kinds of crop and/or soil images using a powerful segmentation tool: the watershed algorithm. This image analysis algorithm was adapted to the specific constraints of precision agriculture. The algorithm was tested on high-resolution bio-physical images of a set of fields in France.ZONAGE;PARCELLE;TELEDETECTION;BLE;SEGMENTATION D'IMAGE;AGRICULTURE DE PRECISION;FRANCE;BOURGOGNE;PRECISION AGRICULTURE;MANAGEMENT ZONES;REMOTE SENSING;IMAGE ANALYSIS;WATERSHED SEGMENTATION
The Magnetic Fields at the Surface of Active Single G-K Giants
We investigate the magnetic field at the surface of 48 red giants selected as
promising for detection of Stokes V Zeeman signatures in their spectral lines.
We use the spectropolarimeters Narval and ESPaDOnS to detect circular
polarization within the photospheric absorption lines of our targets and use
the least-squares deconvolution (LSD) method. We also measure the classical
S-index activity indicator, and the stellar radial velocity. To infer the
evolutionary status of our giants and to interpret our results, we use
state-of-the-art stellar evolutionary models with predictions of convective
turnover times. We unambiguously detect magnetic fields via Zeeman signatures
in 29 of the 48 red giants in our sample. Zeeman signatures are found in all
but one of the 24 red giants exhibiting signs of activity, as well as 6 out of
17 bright giant stars.The majority of the magnetically detected giants are
either in the first dredge up phase or at the beginning of core He burning,
i.e. phases when the convective turnover time is at a maximum: this corresponds
to a 'magnetic strip' for red giants in the Hertzsprung-Russell diagram. A
close study of the 16 giants with known rotational periods shows that the
measured magnetic field strength is tightly correlated with the rotational
properties, namely to the rotational period and to the Rossby number Ro. Our
results show that the magnetic fields of these giants are produced by a dynamo.
Four stars for which the magnetic field is measured to be outstandingly strong
with respect to that expected from the rotational period/magnetic field
relation or their evolutionary status are interpreted as being probable
descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4
bright giants (Aldebaran, Alphard, Arcturus, eta Psc) are detected with
magnetic field strength at the sub-gauss level.Comment: 34 pages, 22 Figures, accepted for publication in Astronomy &
Astrophysic
Planck 2018 results. VIII. Gravitational lensing
We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5σ to 9σ. Combined with temperature, lensing is detected at 40σ. We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains σ₈Ω_m^(0.25) = 0.589 ± 0.020 (1σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ₈ = 0.811 ± 0.019, H₀ = 67.9_(−1.3)^(+1.2) km s⁻¹ Mpc⁻¹, and Ω_m = 0.303_(−0.018)^(+0.016). Combining with Planck CMB power spectrum data, we measure σ₈ to better than 1% precision, finding σ₈ = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ₈ − Ω_m space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck-only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance
Planck 2018 results. III. High Frequency Instrument data processing and frequency maps
This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck-HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100–353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 μK, an accuracy of order 10−4. This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of “frequency maps”, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10⁻⁴ level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10⁻³ level
Planck 2018 results. V. CMB power spectra and likelihoods
We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low (ℓ 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations
Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales
The Sun is a non-equilibrium dissipative system subjected to an energy flow
which originates in its core. Convective overshooting motions create
temperature and velocity structures which show a temporal and spatial
evolution. As a result, photospheric structures are generally considered to be
the direct manifestation of convective plasma motions. The plasma flows on the
photosphere govern the motion of single magnetic elements. These elements are
arranged in typical patterns which are observed as a variety of multiscale
magnetic patterns. High resolution magnetograms of quiet solar surface revealed
the presence of magnetic underdense regions in the solar photosphere, commonly
called voids, which may be considered a signature of the underlying convective
structure. The analysis of such patterns paves the way for the investigation of
all turbulent convective scales from granular to global. In order to address
the question of magnetic structures driven by turbulent convection at granular
and mesogranular scales we used a "voids" detection method. The computed voids
distribution shows an exponential behavior at scales between 2 and 10 Mm and
the absence of features at 5-10 Mm mesogranular scales. The absence of
preferred scales of organization in the 2-10 Mm range supports the multiscale
nature of flows on the solar surface and the absence of a mesogranular
convective scale
EK Eridani: the tip of the iceberg of giants which have evolved from magnetic Ap stars
We observe the slowly-rotating, active, single giant, EK Eri, to study and
infer the nature of its magnetic field directly. We used the spectropolarimeter
NARVAL at the Telescope Bernard Lyot, Pic du Midi Observatory, and the Least
Square Deconvolution method to create high signal-to-noise ratio Stokes V
profiles. We fitted the Stokes V profiles with a model of the large-scale
magnetic field. We studied the classical activity indicators, the CaII H and K
lines, the CaII infrared triplet, and H\alpha line. We detected the Stokes V
signal of EK Eri securely and measured the longitudinal magnetic field Bl for
seven individual dates spanning 60% of the rotational period. The measured
longitudinal magnetic field of EK Eri reached about 100 G and was as strong as
fields observed in RSCVn or FK Com type stars: this was found to be
extraordinary when compared with the weak fields observed at the surfaces of
slowly-rotating MS stars or any single red giant previously observed with
NARVAL. From our modeling, we infer that the mean surface magnetic field is
about 270 G, and that the large scale magnetic field is dominated by a poloidal
component. This is compatible with expectations for the descendant of a
strongly magnetic Ap star.Comment: 8 pages, 6 figures. Accepted for publication in A&
3D evolution of a filament disappearance event observed by STEREO
A filament disappearance event was observed on 22 May 2008 during our recent
campaign JOP 178. The filament, situated in the southern hemisphere, showed
sinistral chirality consistent with the hemispheric rule. The event was well
observed by several observatories in particular by THEMIS. One day before the
disappearance, H observations showed up and down flows in adjacent
locations along the filament, which suggest plasma motions along twisted flux
rope. THEMIS and GONG observations show shearing photospheric motions leading
to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation
angle 52.4 degrees, showed quite different views of this untwisting flux rope
in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament
during its eruption phase using STEREO EUV He II 304 \AA\ images and find that
the filament was highly inclined to the solar normal. The He II 304 \AA\ movies
show individual threads, which oscillate and rise to an altitude of about 120
Mm with apparent velocities of about 100 km s, during the rapid
evolution phase. Finally, as the flux rope expands into the corona, the
filament disappears by becoming optically thin to undetectable levels. No CME
was detected by STEREO, only a faint CME was recorded by LASCO at the beginning
of the disappearance phase at 02:00 UT, which could be due to partial filament
eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath
the filament prior to the disappearance phase, suggesting magnetic reconnection
below the flux rope
A dominant magnetic dipole for the evolved Ap star candidate EK Eridani
EK Eri is one of the most slowly rotating active giants known, and has been
proposed to be the descendant of a strongly magnetic Ap star. We have performed
a spectropolarimetric study of EK Eri over 4 photometric periods with the aim
of inferring the topology of its magnetic field. We used the NARVAL
spectropolarimeter at the Bernard Lyot telescope at the Pic du Midi
Observatory, along with the least-squares deconvolution method, to extract high
signal-to-noise ratio Stokes V profiles from a timeseries of 28 polarisation
spectra. We have derived the surface-averaged longitudinal magnetic field Bl.
We fit the Stokes V profiles with a model of the large-scale magnetic field and
obtained Zeeman Doppler images of the surface magnetic strength and geometry.
Bl variations of up to about 80 G are observed without any reversal of its
sign, and which are in phase with photometric ephemeris. The activity
indicators are shown to vary smoothly on a timescale compatible with the
rotational period inferred from photometry (308.8 d.), however large deviations
can occur from one rotation to another. The surface magnetic field variations
of EK Eri appear to be dominated by a strong magnetic spot (of negative
polarity) which is phased with the dark (cool) photometric spot. Our modeling
shows that the large-scale magnetic field of EK Eri is strongly poloidal. For a
rotational axis inclination of i = 60{\deg}, we obtain a model that is almost
purely dipolar. In the dipolar model, the strong magnetic/photometric spot
corresponds to the negative pole of the dipole, which could be the remnant of
that of an Ap star progenitor of EK Eri. Our observations and modeling
conceptually support this hypothesis, suggesting an explanation of the
outstanding magnetic properties of EK Eri as the result of interaction between
deep convection and the remnant of an Ap star magnetic dipole.Comment: 8 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
- …
