5,631 research outputs found
Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision
In order to improve usability and safety, modern unmanned aerial vehicles
(UAVs) are equipped with sensors to monitor the environment, such as
laser-scanners and cameras. One important aspect in this monitoring process is
to detect obstacles in the flight path in order to avoid collisions. Since a
large number of consumer UAVs suffer from tight weight and power constraints,
our work focuses on obstacle avoidance based on a lightweight stereo camera
setup. We use disparity maps, which are computed from the camera images, to
locate obstacles and to automatically steer the UAV around them. For disparity
map computation we optimize the well-known semi-global matching (SGM) approach
for the deployment on an embedded FPGA. The disparity maps are then converted
into simpler representations, the so called U-/V-Maps, which are used for
obstacle detection. Obstacle avoidance is based on a reactive approach which
finds the shortest path around the obstacles as soon as they have a critical
distance to the UAV. One of the fundamental goals of our work was the reduction
of development costs by closing the gap between application development and
hardware optimization. Hence, we aimed at using high-level synthesis (HLS) for
porting our algorithms, which are written in C/C++, to the embedded FPGA. We
evaluated our implementation of the disparity estimation on the KITTI Stereo
2015 benchmark. The integrity of the overall realtime reactive obstacle
avoidance algorithm has been evaluated by using Hardware-in-the-Loop testing in
conjunction with two flight simulators.Comment: Accepted in the International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Scienc
Optimal Sobolev type inequalities in Lorentz spaces
It is well known that the classical Sobolev embeddings may be improved within the framework of Lorentz spaces L p,q : the space D 1,p (R n ) , 1\u2009<\u2009p\u2009<\u2009n, embeds into L p 17 ,q (R n ) , p\u2009 64\u2009q\u2009 64\u2009 1e. However, the value of the best possible embedding constants in the corresponding inequalities is known just in the case L p 17 ,p (R n ) . Here, we determine optimal constants for the embedding of the space D 1,p (R n ) , 1\u2009<\u2009p\u2009<\u2009n, into the whole Lorentz space scale L p 17 ,q (R n ) , p\u2009 64\u2009q\u2009 64\u2009 1e, including the limiting case q\u2009=\u2009p of which we give a new proof. We also exhibit extremal functions for these embedding inequalities by solving related elliptic problems
Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type
The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by
F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of
functions that satisfy the Dirichlet boundary conditions and whose derivatives
are in L^2([0,pi]). For generic nonlinearities f, C=\cup C_k decomposes into
manifolds of codimension 1 in X. If f''0, the set C_j is shown to be
non-empty if, and only if, -j^2 (the j-th eigenvalue of u -> u'') is in the
range of f'. The critical components C_k are (topological) hyperplanes.Comment: 6 pages, no figure
exploding clusters dynamics probed by XUV fluorescence
Clusters excited by intense laser pulses are a unique source of warm dense
matter, that has been the subject of intensive experimental studies. The
majority of those investigations concerns atomic clusters, whereas the
evolution of molecular clusters excited by intense laser pulses is less
explored. In this work we trace the dynamics of clusters
triggered by a few-cycle 1.45-m driving pulse through the detection of XUV
fluorescence induced by a delayed 800-nm ignition pulse. Striking differences
among fluorescence dynamics from different ionic species are observed
Pair production in laser fields oscillating in space and time
The production of electron-positron pairs from vacuum by counterpropagating
laser beams of linear polarization is calculated. In contrast to the usual
approximate approach, the spatial dependence and magnetic component of the
laser field are taken into account. We show that the latter strongly affects
the creation process at high laser frequency: the production probability is
reduced, the kinematics is fundamentally modified, the resonant
Rabi-oscillation pattern is distorted and the resonance positions are shifted,
multiplied and split.Comment: 5 pages, 5 figure
Bubble concentration on spheres for supercritical elliptic problems
We consider the supercritical Lane-Emden problem (P_\eps)\qquad
-\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\
\partial\mathcal{A}
where is an annulus in \rr^{2m}, and
p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0.
We prove the existence of positive and sign changing solutions of (P_\eps)
concentrating and blowing-up, as \eps\to0, on dimensional spheres.
Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and
Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a
nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be
solved by a Ljapunov-Schmidt finite dimensional reduction
Flow Separation Side Loads Excitation of Rocket Nozzle FEM
Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid/structure interaction for a single moment in time
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO
We employ reactive molecular-beam epitaxy to synthesize the metastable
perovskite SrIrO and utilize {\it in situ} angle-resolved photoemission
to reveal its electronic structure as an exotic narrow-band semimetal. We
discover remarkably narrow bands which originate from a confluence of strong
spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO
octahedral rotations. The partial occupation of numerous bands with strongly
mixed orbital characters signals the breakdown of the single-band Mott picture
that characterizes its insulating two-dimensional counterpart,
SrIrO, illustrating the power of structure-property relations for
manipulating the subtle balance between spin-orbit interactions and
electron-electron interactions
- …
