275 research outputs found
Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs
The resistivity, Hall effect and transverse magnetoresistance (MR) have been
measured in low residual resistivity single crystals of LiFeAs. A comparison
with angle resolved photoemission spectroscopy and quantum oscillation data
implies that four carrier bands unevenly contribute to the transport. However
the scattering rates of the carriers all display the T^2 behavior expected for
a Fermi liquid. Near Tc low field deviations of the MR with respect to a H^2
variation permit us to extract the superconducting fluctuation contribution to
the conductivity. Though below Tc the anisotropy of superconductivity is rather
small, the superconducting fluctuations display a quasi ideal two-dimensional
behavior which persists up to 1.4 Tc. These results call for a refined
theoretical understanding of the multiband behavior of superconductivity in
this pnictide.Comment: 8pages with supplementary material, 6 figure
Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2
We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport
measurements and Angle Resolved photoemission spectroscopy. We observe that Fe
and Ru orbitals hybridize to form a coherent electronic structure and that Ru
does not induce doping. The number of holes and electrons, deduced from the
area of the Fermi Surface pockets, are both about twice larger than in
BaFe2As2. The contribution of both carriers to the transport is evidenced by a
change of sign of the Hall coefficient with decreasing temperature. Fermi
velocities increase significantly with respect to BaFe2As2, suggesting a
significant reduction of correlation effects. This may be a key to understand
the appearance of superconductivity at the expense of magnetism in undoped iron
pnictides
Planar 17O NMR study of Pr_yY_{1-y}Ba_2Cu_3O_{6+x}
We report the planar ^{17}O NMR shift in Pr substituted YBa_{2}Cu_{3}O_{6+x},
which at x=1 exhibits a characteristic pseudogap temperature dependence,
confirming that Pr reduces the concentration of mobile holes in the CuO_{2}
planes. Our estimate of the rate of this counterdoping effect, obtained by
comparison with the shift in pure samples with reduced oxygen content, is found
insufficient to explain the observed reduction of T_c. From the temperature
dependent magnetic broadening of the ^{17}O NMR we conclude that the Pr moment
and the local magnetic defect induced in the CuO_2 planes produce a long range
spin polarization in the planes, which is likely associated with the extra
reduction of T_c. We find a qualitatively different behaviour in the oxygen
depleted Pr_yY_{1-y}Ba_2Cu_3O_{6.6}, i.e. the suppression of T is nearly
the same, but the magnetic broadening of the ^{17}O NMR appears weaker. This
difference may signal a weaker coupling of the Pr to the planes in the
underdoped compound, which might be linked with the larger Pr to CuO_2 plane
distance, and correspondingly weaker hybridization.Comment: 8 pages, 9 figures, accepted in Phys Rev
Irradiation-induced confinement in a quasi-one-dimensional metal
The anisotropic resistivity of PrBaCuO has been measured as a
function of electron irradiation fluence. Localization effects are observed for
extremely small amounts of disorder corresponding to electron mean-free-paths
of order 100 unit cells. Estimates of the localization corrections suggest that
this anomalous localization threshold heralds a crossover to a ground state
with pronounced one-dimensional character in which conduction electrons become
confined to a small cluster of chains.Comment: 4 pages, 4 figure
Reduction of Tc due to Impurities in Cuprate Superconductors
In order to explain how impurities affect the unconventional
superconductivity, we study non-magnetic impurity effect on the transition
temperature using on-site U Hubbard model within a fluctuation exchange (FLEX)
approximation. We find that in appearance, the reduction of Tc roughly
coincides with the well-known Abrikosov-Gor'kov formula. This coincidence
results from the cancellation between two effects; one is the reduction of
attractive force due to randomness, and another is the reduction of the damping
rate of quasi-particle arising from electron interaction. As another problem,
we also study impurity effect on underdoped cuprate as the system showing
pseudogap phenomena. To the aim, we adopt the pairing scenario for the
pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by
impurities. We find that 'pseudogap breaking' by impurities plays the essential
role in underdoped cuprate and suppresses the Tc reduction due to the
superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS
Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor
The nature of the pseudogap phase is a central problem in the quest to
understand high-Tc cuprate superconductors. A fundamental question is what
symmetries are broken when that phase sets in below a temperature T*. There is
evidence from both polarized neutron diffraction and polar Kerr effect
measurements that time- reversal symmetry is broken, but at temperatures that
differ significantly. Broken rotational symmetry was detected by both
resistivity and inelastic neutron scattering at low doping and by scanning
tunnelling spectroscopy at low temperature, but with no clear connection to T*.
Here we report the observation of a large in-plane anisotropy of the Nernst
effect in YBa2Cu3Oy that sets in precisely at T*, throughout the doping phase
diagram. We show that the CuO chains of the orthorhombic lattice are not
responsible for this anisotropy, which is therefore an intrinsic property of
the CuO2 planes. We conclude that the pseudogap phase is an electronic state
which strongly breaks four-fold rotational symmetry. This narrows the range of
possible states considerably, pointing to stripe or nematic orders.Comment: Published version. Journal reference and DOI adde
Electron transport and anisotropy of the upper critical magnetic field in a Ba0.68K0.32Fe2As2 single crystals
Early work on the iron-arsenide compounds supported the view, that a reduced
dimensionality might be a necessary prerequisite for high-Tc superconductivity.
Later, however, it was found that the zero-temperature upper critical magnetic
field, Hc2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we
report measurements of the temperature dependence of the electrical
resistivity, \Gamma(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single
crystals in zero magnetic field and for Ba0.68K0.32Fe2As2 as well in static and
pulsed magnetic fields up to 60 T. We find that the resistivity of both
compounds in zero field is well described by an exponential term due to
inter-sheet umklapp electron-phonon scattering between light electrons around
the M point to heavy hole sheets at the \Gamma point in reciprocal space. From
our data, we construct an H-T phase diagram for the inter-plane (H || c) and
in-plane (H || ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data
for underdoped 122 FeAs compounds, we find that Hc2(T) is in fact anisotropic
in optimally doped samples down to low temperatures. The anisotropy parameter,
{\gamma} = Habc2/Hcc2, is about 2.2 at Tc. For both field orientations we find
a concave curvature of the Hc2 lines with decreasing anisotropy and saturation
towards lower temperature. Taking into account Pauli spin paramagnetism we
perfectly can describe Hc2(T) and its anisotropy.Comment: 7 pages, 3 figure
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Superconducting Fluctuation and Pseudogap in Disordered Short Coherence Length Superconductor
We investigate the role of disorder on the superconducting (SC) fluctuation
in short coherence length d-wave superconductors. The particular intetest is
focused on the disorder-induced microscopic inhomogeneity of SC fluctuation and
its effect on the pseudogap phenomena. We formulate the self-consistent 1-loop
order theory for the SC fluctuation in inhomogeneous systems and analyze the
disordered -- model. The SC correlation function, electronic DOS and
the critical temperature are estimated. The SC fluctuation is localized like a
nanoscale granular structure when the coherence length is short, namely the
transition temperature is high. This is contrasted to the long coherence length
superconductors where the order parameter is almost uniform in the microscopic
scale. In the former case, the SC fluctuation is enhanced by the disorder in
contrast to the Abrikosov-Gorkov theory. These results are consistent with the
STM, NMR and transport measurements in high- cuprates and illuminate
the essential role of the microscopic inhomogeneity. We calculate the spacial
dependence of DOS around the single impurity and discuss the consistency with
the NMR measurements
Pressure versus concentration tuning of the superconductivity in Ba(Fe(1-x)Cox)2As2
In the iron arsenide compound BaFe2As2, superconductivity can be induced
either by a variation of its chemical composition, e.g., by replacing Fe with
Co, or by a reduction of the unit-cell volume through the application of
hydrostatic pressure p. In contrast to chemical substitutions, pressure is
expected to introduce no additional disorder into the lattice. We compare the
two routes to superconductivity by measuring the p dependence of the
superconducting transition temperature Tc of Ba(Fe(1-x)Cox)2As2 single crystals
with different Co content x. We find that Tc(p) of underdoped and overdoped
samples increases and decreases, respectively, tracking quantitatively the
Tc(x) dependence. To clarify to which extent the superconductivity relies on
distinct structural features we analyze the crystal structure as a function of
x and compare the results with that of BaFe2As2 under pressure.Comment: 14 pages, 4 figures, to be published in JPSJ Vol. 79 No. 12. The
copyright is held by The Physical Society of Japa
- …
