1,199 research outputs found
An entirely analytical cosmological model
The purpose of the present study is to show that in a particular cosmological
model, with an affine equation of state, one can obtain, besides the background
given by the scale factor, Hubble and deceleration parameters, a representation
in terms of scalar fields and, more important, explicit mathematical
expressions for the density contrast and the power spectrum. Although the model
so obtained is not realistic, it reproduces features observed in some previous
numerical studies and, therefore, it may be useful in the testing of numerical
codes and as a pedagogical tool.Comment: 4 pages (revtex4), 4 figure
The Ellipticity of the Disks of Spiral Galaxies
The disks of spiral galaxies are generally elliptical rather than circular.
The distribution of ellipticities can be fit with a log-normal distribution.
For a sample of 12,764 galaxies from the Sloan Digital Sky Survey Data Release
1 (SDSS DR1), the distribution of apparent axis ratios in the i band is best
fit by a log-normal distribution of intrinsic ellipticities with ln epsilon =
-1.85 +/- 0.89. For a sample of nearly face-on spiral galaxies, analyzed by
Andersen and Bershady using both photometric and spectroscopic data, the best
fitting distribution of ellipticities has ln epsilon = -2.29 +/- 1.04. Given
the small size of the Andersen-Bershady sample, the two distribution are not
necessarily inconsistent. If the ellipticity of the potential were equal to
that of the light distribution of the SDSS DR1 galaxies, it would produce 1.0
magnitudes of scatter in the Tully-Fisher relation, greater than is observed.
The Andersen-Bershady results, however, are consistent with a scatter as small
as 0.25 magnitudes in the Tully-Fisher relation.Comment: 19 pages, 5 figures; ApJ, accepte
More evidence for hidden spiral and bar features in bright early-type dwarf galaxies
Following the discovery of spiral structure in IC3328 (Jerjen et al.~2000),
we present further evidence that a sizable fraction of bright early-type dwarfs
in the Virgo cluster are genuine disk galaxies, or are hosting a disk
component. Among a sample of 23 nucleated dwarf ellipticals and dS0s observed
with the Very Large Telescope in and , we found another four systems
exhibiting non-axisymmetric structures, such as a bar and/or spiral arms,
indicative of a disk (IC0783, IC3349, NGC4431, IC3468). Particularly remarkable
are the two-armed spiral pattern in IC0783 and the bar and trailing arms in
NGC4431. For both galaxies the disk nature has recently been confirmed by a
rotation velocity measurement (Simien & Prugniel 2002). Our photometric search
is based on a Fourier decomposition method and a specific version of unsharp
masking. Some ``early-type'' dwarfs in the Virgo cluster seem to be former
late-type galaxies which were transformed to early-type morphology, e.g. by
``harassment'', during their infall to the cluster, while maintaining part of
their disk structure.Comment: A&A accepte
Robust, data-driven inference in non-linear cosmostatistics
We discuss two projects in non-linear cosmostatistics applicable to very
large surveys of galaxies. The first is a Bayesian reconstruction of galaxy
redshifts and their number density distribution from approximate, photometric
redshift data. The second focuses on cosmic voids and uses them to construct
cosmic spheres that allow reconstructing the expansion history of the Universe
using the Alcock-Paczynski test. In both cases we find that non-linearities
enable the methods or enhance the results: non-linear gravitational evolution
creates voids and our photo-z reconstruction works best in the highest density
(and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern
Astronomy V," held at Penn Stat
Cosmological perturbations on local systems
We study the effect of cosmological expansion on orbits--galactic, planetary,
or atomic--subject to an inverse-square force law. We obtain the laws of motion
for gravitational or electrical interactions from general relativity--in
particular, we find the gravitational field of a mass distribution in an
expanding universe by applying perturbation theory to the Robertson-Walker
metric. Cosmological expansion induces an ( force where
is the cosmological scale factor. In a locally Newtonian framework, we
show that the term represents the effect of a continuous
distribution of cosmological material in Hubble flow, and that the total force
on an object, due to the cosmological material plus the matter perturbation,
can be represented as the negative gradient of a gravitational potential whose
source is the material actually present. We also consider the effect on local
dynamics of the cosmological constant. We calculate the perihelion precession
of elliptical orbits due to the cosmological constant induced force, and work
out a generalized virial relation applicable to gravitationally bound clusters.Comment: 10 page
The Size and Shape of Voids in Three-Dimensional Galaxy Surveys
The sizes and shapes of voids in a galaxy survey depend not only on the
physics of structure formation, but also on the sampling density of the survey
and on the algorithm used to define voids. Using an N-body simulation with a
CDM power spectrum, we study the properties of voids in samples with different
number densities of galaxies, both in redshift space and in real space. When
voids are defined as regions totally empty of galaxies, their characteristic
volume is strongly dependent on sampling density; when they are defined as
regions whose density is 0.2 times the mean galaxy density, the dependence is
less strong. We compare two void-finding algorithms, one in which voids are
nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen,
which does not predefine the shape of a void. Regardless of the algorithm
chosen, the characteristic void size is larger in redshift space than in real
space, and is larger for low sampling densities than for high sampling
densities. We define an elongation statistic Q which measures the tendency of
voids to be stretched or squashed along the line of sight. Using this
statistic, we find that at sufficiently high sampling densities (comparable to
the number densities of galaxies brighter than L_*), large voids tend to be
slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte
Extreme internal charging currents in medium Earth orbit: Analysis of SURF plate currents on Giove-A
Relativistic electrons can penetrate spacecraft shielding and can damage satellite components. Spacecraft in medium Earth orbit pass through the heart of the outer radiation belt and may be exposed to large fluxes of relativistic electrons, particularly during extreme space weather events. In this study we perform an extreme value analysis of the daily average internal charging currents at three different shielding depths in medium Earth orbit as a function of L∗ and along the orbit path. We use data from the SURF instrument on board the European Space Agency's Giove-A spacecraft from December 2005 to January 2016. The top, middle, and bottom plates of this instrument respond to electrons with energies >500 keV, >700 keV, and >1.1 MeV, respectively. The 1 in 10 year daily average top plate current decreases with increasing L∗ ranging from 1.0 pA cm−2 at L∗=4.75 to 0.03 pA cm−2 at L∗=7.0. The 1 in 100 year daily average top plate current is a factor of 1.2 to 1.8 larger than the corresponding 1 in 10 year current. The 1 in 10 year daily average middle and bottom plate currents also decrease with increasing L∗ ranging from 0.4 pA cm−2 at L∗=4.75 to 0.01 pA cm−2 at L∗=7.0. The 1 in 100 year daily average middle and bottom plate currents are a factor of 1.2 to 2.7 larger than the corresponding 1 in 10 year currents. Averaged along the orbit path the 1 in 10 year daily average top, middle, and bottom plate currents are 0.22, 0.094, and 0.094 pA cm−2, respectively
Domain Wall Junctions are 1/4-BPS States
We study N=1 SUSY theories in four dimensions with multiple discrete vacua,
which admit solitonic solutions describing segments of domain walls meeting at
one-dimensional junctions. We show that there exist solutions preserving one
quarter of the underlying supersymmetry -- a single Hermitian supercharge. We
derive a BPS bound for the masses of these solutions and construct a solution
explicitly in a special case. The relevance to the confining phase of N=1 SUSY
Yang-Mills and the M-theory/SYM relationship is discussed.Comment: 18 pages, 4 figures, uses RevTeX. Brief comments concerning lattices
of junctions added. Version to appear in Phys. Rev.
- …
