203 research outputs found
Collagen and calcium-binding EGF domains 1 is frequently inactivated in ovarian cancer by aberrant promoter hypermethylation and modulates cell migration and survival
Recommended from our members
Indoor air quality in modern US detached homes with and without mechanical ventilation
Age-specific prevalence of HPV genotypes in cervical cytology samples with equivocal or low-grade lesions
The E3 ubiquitin ligase EDD is an adverse prognostic factor for serous epithelial ovarian cancer and modulates cisplatin resistance in vitro
Despite a high initial response rate to first-line platinum/paclitaxel chemotherapy, most women with epithelial ovarian cancer relapse with recurrent disease that becomes refractory to further cytotoxic treatment. We have previously shown that the E3 ubiquitin ligase, EDD, a regulator of DNA damage responses, is amplified and overexpressed in serous ovarian carcinoma. Given that DNA damage pathways are linked to platinum resistance, the aim of this study was to determine if EDD expression was associated with disease recurrence and platinum sensitivity in serous ovarian cancer. High nuclear EDD expression, as determined by immunohistochemistry in a cohort of 151 women with serous ovarian carcinoma, was associated with an approximately two-fold increased risk of disease recurrence and death in patients who initially responded to first-line chemotherapy, independently of disease stage and suboptimal debulking. Although EDD expression was not directly correlated with relative cisplatin sensitivity of ovarian cancer cell lines, sensitivity to cisplatin was partially restored in platinum-resistant A2780-cp70 ovarian cancer cells following siRNA-mediated knockdown of EDD expression. These results identify EDD as a new independent prognostic marker for outcome in serous ovarian cancer, and suggest that pathways involving EDD, including DNA damage responses, may represent new therapeutic targets for chemoresistant ovarian cancer
Whole organisms or pure compounds? entourage effect versus drug specificity
As the therapeutic use of sacred plants and fungi becomes increasingly accepted by Western medicine, a tug of war has been taking place between those who advocate the traditional consumption of whole organisms and those who defend exclusively the utilization of purified compounds. The attempt to reduce organisms to single active principles is challenged by the sheer complexity of traditional medicine. Ayahuasca, for example, is a concoction of at least two plant species containing multiple psychoactive substances with complex interactions. Similarly, cannabis contains dozens of psychoactive substances whose specific combinations in different strains correspond to different types of therapeutic and cognitive effects. The “entourage effect” refers to the synergistic effects of the multiple compounds present in whole organisms, which may potentiate clinical efficacy while attenuating side effects. In opposition to this view, mainstream pharmacology is adamant about the need to use purified substances, presumably more specific and safe. In this chapter, I will review the evidence on both sides to discuss the scientific, economic, and political implications of this controversy. The evidence indicates that it is time to embrace the therapeutic complexity of psychedelics.2019-07-3
Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis
- …
