12,301 research outputs found
Commuting self-adjoint extensions of symmetric operators defined from the partial derivatives
We consider the problem of finding commuting self-adjoint extensions of the
partial derivatives {(1/i)(\partial/\partial x_j):j=1,...,d} with domain
C_c^\infty(\Omega) where the self-adjointness is defined relative to
L^2(\Omega), and \Omega is a given open subset of R^d. The measure on \Omega is
Lebesgue measure on R^d restricted to \Omega. The problem originates with I.E.
Segal and B. Fuglede, and is difficult in general. In this paper, we provide a
representation-theoretic answer in the special case when \Omega=I\times\Omega_2
and I is an open interval. We then apply the results to the case when \Omega is
a d-cube, I^d, and we describe possible subsets \Lambda of R^d such that
{e^(i2\pi\lambda \dot x) restricted to I^d:\lambda\in\Lambda} is an orthonormal
basis in L^2(I^d).Comment: LaTeX2e amsart class, 18 pages, 2 figures; PACS numbers 02.20.Km,
02.30.Nw, 02.30.Tb, 02.60.-x, 03.65.-w, 03.65.Bz, 03.65.Db, 61.12.Bt,
61.44.B
A combined experimental and theoretical study on realizing and using laser controlled torsion of molecules
It is demonstrated that strong laser pulses can introduce torsional motion in
the axially chiral molecule 3,5-diflouro-3',5'-dibromo-biphenyl (DFDBrBPh). A
nanosecond laser pulse spatially aligns the stereogenic carbon-carbon (C-C)
bond axis allowing a perpendicularly polarized, intense femtosecond pulse to
initiate torsional motion accompanied by a rotation about the fixed axis. We
monitor the induced motion by femtosecond time-resolved Coulomb explosion
imaging. Our theoretical analysis corroborates the experimental findings and on
the basis of these results we discuss future applications of laser induced
torsion, viz., time-resolved studies of de-racemization and laser controlled
molecular junctions based on molecules with torsion.Comment: 10 pages, 9 figures, 2 tables; submitted to J. Chem. Phys.
The Star Formation Epoch of the Most Massive Early-Type Galaxies
We present new Keck spectroscopy of early-type galaxies in three galaxy
clusters at z~0.5. We focus on the fundamental plane (FP) relation, and combine
the kinematics with structural parameters determined from HST images. The
galaxies obey clear FP relations, which are offset from the FP of the nearby
Coma cluster due to passive evolution of the stellar populations. The z~0.5
data are combined with published data for 11 additional clusters at
0.18<z<1.28, to determine the evolution of the mean M/L(B) ratio of cluster
galaxies with masses M>10^11 M_sun, as implied by the FP. We find
dlog(M/L(B))/dz = -0.555+-0.042, stronger evolution than was previously
inferred from smaller samples. The observed evolution depends on the
luminosity-weighted mean age of the stars in the galaxies, the initial mass
function (IMF), selection effects due to progenitor bias, and other parameters.
Assuming a normal IMF but allowing for various other sources of uncertainty we
find z* = 2.01+-0.20 for the luminosity-weighted mean star formation epoch. The
main uncertainty is the slope of the IMF in the range 1-2 Solar masses: we find
z* = 4.0 for a top-heavy IMF with slope x=0. The M/L(B) ratios of the cluster
galaxies are compared to those of recently published samples of field
early-type galaxies at 0.32<z<1.14. Assuming that progenitor bias and the IMF
do not depend on environment we find that the present-day age of stars in
massive field galaxies is 4.1 +- 2.0 % (~0.4 Gyr) less than that of stars in
massive cluster galaxies, consistent with most, but not all, previous studies
of local and distant early-type galaxies. This relatively small age difference
is surprising in the context of expectations from ``standard'' hierarchical
galaxy formation models. [ABRIDGED]Comment: Accepted for publication in ApJ. Minor corrections to match published
versio
The Fundamental Plane at z=1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z>1
We present results on the Fundamental Plane (FP) of early-type galaxies in
the cluster RDCS J0848+4453 at z=1.27. Internal velocity dispersions of three
K-selected early-type galaxies are determined from deep Keck spectra.
Structural parameters are determined from HST NICMOS images. The galaxies show
substantial offsets from the FP of the nearby Coma cluster, as expected from
passive evolution of their stellar populations. The offsets from the FP can be
expressed as offsets in M/L ratio. The M/L ratios of the two most massive
galaxies are consistent with an extrapolation of results obtained at
z=0.02-0.83. The evolution of early-type galaxies with masses >10^11 M_sun is
well described by ln M/L(B) = (-1.06 +- 0.09) z, corresponding to passive
evolution of -1.50 +- 0.13 mag at z=1.3. Ignoring selection effects, the best
fitting stellar formation redshift is z*=2.6, corresponding to a luminosity
weighted age at the epoch of observation of ~2 Gyr. The M/L ratios of these two
galaxies are also in excellent agreement with predictions from models that
include progenitor bias. The third galaxy is a factor ~10 less massive than the
other two, shows strong Balmer absorption lines in its spectrum, and is offset
from the Coma Fundamental Plane by 2.9 mag in rest-frame B. Despite their large
range in M/L ratios, all three galaxies fall in the ``Extremely Red Object''
(ERO) class with I-H>3 and R-K>5, and our results show that it is hazardous to
use simple models for converting luminosity to mass for these objects.
Measurements of M/L ratios at high redshift can be considered first steps to
empirically disentangle luminosity and mass evolution at the high mass end of
the galaxy population, lifting an important degeneracy in the interpretation of
evolution of the luminosity function. [SHORTENED]Comment: Accepted for publication in the Astrophysical Journa
Tuning of magnetic and electronic states by control of oxygen content in lanthanum strontium cobaltites
We report on the magnetic, resistive, and structural studies of perovskite
LaSrCoO. By using the relation of synthesis
temperature and oxygen partial pressure to oxygen stoichiometry obtained from
thermogravimetric analysis, we have synthesized a series of samples with
precisely controlled . These samples show three structural
phases at , , , and two-phase
behavior for other oxygen contents. The stoichiometric material with
is a cubic ferromagnetic metal with the Curie temperature K. The increase of to 0.15 is followed by a linear decrease of
to 160 K and a metal-insulator transition near the
boundary of the cubic structure range. Further increase of results in
formation of a tetragonal phase for
and a brownmillerite phase for . At low
temperatures, these are weak ferromagnetic insulators (canted antiferromagnets)
with magnetic transitions at and 120 K, respectively. At
higher temperatures, the phase is -type
antiferromagnetic between 230 K and 360 K. Low temperature magnetic
properties of this system for can be described in terms of a
mixture of Co ions in the low-spin state and Co ions in the
intermediate-spin state and a possible spin transition of Co to the
intermediate-spin state above . For , there appears to
be a combination of Co and Co ions, both in the high-spin state
with dominating antiferromagnetic interactions.Comment: RevTeX, 9 pages, 7 figures, to be published in Physical Review
Photometric Properties of 47 Clusters of Galaxies: I. The Butcher-Oemler Effect
We present gri CCD photometry of 44 Abell clusters and 4 cluster candidates.
Twenty one clusters in our sample have spectroscopic redshifts. Fitting a
relation between mean g, r and i magnitudes, and redshift for this subsample,
we have calculated photometric redshifts for the remainder with an estimated
accuracy of 0.03. The resulting redshift range for the sample is 0.03<z<0.38.
Color-magnitude diagrams are presented for the complete sample and used to
study evolution of the galaxy population in the cluster environment. Our
observations show a strong Butcher-Oemler effect (Butcher & Oemler 1978, 1984),
with an increase in the fraction of blue galaxies (f_B) with redshift that
seems more consistent with the steeper relation estimated by Rakos and
Schombert (1995) than with the original one by Butcher & Oemler (1984).
However, in the redshift range between ~ 0.08 and 0.2, where most of our
clusters lie, there is a wide range of f_B values, consistent with no redshift
evolution of the cluster galaxy population. A large range of f_B values is also
seen between ~ 0.2 and 0.3, when Smail at al. (1998) x-ray clusters are added
to our sample. The discrepancies between samples underscore the need for an
unbiased sample to understand how much of the Butcher-Oemler effect is due to
evolution, and how much to selection effects. We also tested the idea proposed
by Garilli et al. (1996) that there is a population of unusually red galaxies
which could be associated either with the field or clusters, but we find that
these objects are all near the limiting magnitude of the images (20.5<r<22) and
have colors that are consistent with those expected for stars or field galaxies
at z ~ 0.7.Comment: 35 pages including 8 figures, submitted to A
High transport currents in mechanically reinforced MgB2 wires
We prepared and characterized monofilamentary MgB2 wires with a mechanically
reinforced composite sheath of Ta(Nb)/Cu/steel, which leads to dense filaments
and correspondingly high transport currents up to Jc = 10^5 A/cm^2 at 4.2 K,
self field. The reproducibility of the measured transport currents was
excellent and not depending on the wire diameter. Using different precursors,
commercial reacted powder or an unreacted Mg/B powder mixture, a strong
influence on the pinning behaviour and the irreversibility field was observed.
The critical transport current density showed a nearly linear temperature
dependency for all wires being still 52 kA/cm^2 at 20 K and 23 kA/cm^2 at 30 K.
Detailed data for Jc(B,T) and Tc(B) were measured.Comment: 21 pages, 13 figures, revised version, to be published in Supercond.
Sci. Techno
The history of mass assembly of faint red galaxies in 28 galaxy clusters since z=1.3
We measure the relative evolution of the number of bright and faint (as faint
as 0.05 L*) red galaxies in a sample of 28 clusters, of which 16 are at 0.50<=
z<=1.27, all observed through a pair of filters bracketing the 4000 Angstrom
break rest-frame. The abundance of red galaxies, relative to bright ones, is
constant over all the studied redshift range, 0<z<1.3, and rules out a
differential evolution between bright and faint red galaxies as large as
claimed in some past works. Faint red galaxies are largely assembled and in
place at z=1.3 and their deficit does not depend on cluster mass, parametrized
by velocity dispersion or X-ray luminosity. Our analysis, with respect to
previous one, samples a wider redshift range, minimizes systematics and put a
more attention to statistical issues, keeping at the same time a large number
of clusters.Comment: MNRAS, 386, 1045. Half a single sentence (in sec 4.4) change
Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes
The coherent control of scattering processes is considered, with electron
impact dissociation of H used as an example. The physical mechanism
underlying coherently controlled stationary state scattering is exposed by
analyzing a control scenario that relies on previously established entanglement
requirements between the scattering partners. Specifically, initial state
entanglement assures that all collisions in the scattering volume yield the
desirable scattering configuration. Scattering is controlled by preparing the
particular internal state wave function that leads to the favored collisional
configuration in the collision volume. This insight allows coherent control to
be extended to the case of time-dependent scattering. Specifically, we identify
reactive scattering scenarios using incident wave packets of translational
motion where coherent control is operational and initial state entanglement is
unnecessary. Both the stationary and time-dependent scenarios incorporate
extended coherence features, making them physically distinct. From a
theoretical point of view, this work represents a large step forward in the
qualitative understanding of coherently controlled reactive scattering. From an
experimental viewpoint, it offers an alternative to entanglement-based control
schemes. However, both methods present significant challenges to existing
experimental technologies
Toward Equations of Galactic Structure
We find that all classes of galaxies, ranging from disks to spheroids and
from dwarf spheroidals to brightest cluster galaxies, lie on a two dimensional
surface within the space defined by the logarithms of the half-light radius,
r_e, mean surface brightness within r_e, I_e, and internal velocity, V^2 =
(1/2)v_c^2 + sigma^2, where v_c is the rotational velocity and sigma is the
velocity dispersion. If these quantities are expressed in terms of kpc,
L_solar/pc^2, and km/s, then log r_e - log V^2 + log I_e + log Upsilon_e + 0.8
= 0, where we provide a fitting function for Upsilon_e, the mass-to-light ratio
within r_e in units of M_solar/L_solar, that depends only on V and I_e. The
scatter about this surface for our heterogeneous sample of 1925 galaxies is
small (< 0.1 dex) and could be as low as ~ 0.05 dex, or 10%. This small scatter
has three possible implications for how gross galactic structure is affected by
internal factors, such as stellar orbital structure, and by external factors,
such as environment. These factors either 1) play no role beyond generating
some of the observed scatter, 2) move galaxies along the surface, or 3) balance
each other to maintain this surface as the locus of galactic structure
equilibria. We cast the behavior of Upsilon_e in terms of the fraction of
baryons converted to stars, eta, and the concentration of those stars within
the dark matter halo, xi = R_{200}/r_e. We derive eta = 1.9 x 10^{-5} (L/L^*)
Upsilon_* V^{-3} and xi = 1.4 V/r_e. Finally, we present and discuss the
distributions of eta and xi for the full range of galaxies. For systems with
internal velocities comparable to that of the Milky Way (149 < V < 163 km/s),
eta = 0.14 +- 0.05, and xi is, on average, ~ 5 times greater for spheroids than
for disks. (Abridged)Comment: submitted to Ap
- …
