4,249 research outputs found
Inelastic collisions of ultra-cold heteronuclear molecules in an optical trap
Ultra-cold RbCs molecules in high-lying vibrational levels of the
a ground electronic state are confined in an optical trap.
Inelastic collision rates of these molecules with both Rb and Cs atoms are
determined for individual vibrational levels, across an order of magnitude of
binding energies. A simple model for the collision process is shown to
accurately reproduce the observed scattering rates
Evaluation of a new trauma-related drinking to cope measure: Latent structure and heritability
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) commonly co-occur, share latent genetic risk, and are associated with many negative public health outcomes. Via a self-medication framework, trauma-related drinking to cope (TRD), an unexplored phenotype to date, may help explain why these two disorders co-occur, thus serving as an essential target for treatment and prevention efforts. This study sought to create a novel measure of TRD and to investigate its indirect influences on the association between PTSD and AUD, as well as its potential shared molecular genetic risk with PTSD in a genetically-informative study of college students. A sample of 1,896 undergraduate students with a history of trauma and alcohol use provided genotypic data and completed an online assessment battery. The psychometric properties of TRD and how it relates to relevant constructs were examined using descriptive statistics and structural equation modeling. Results of a correlated multiple mediator model indicated that, while accounting for the effects of generalized drinking motives, TRD partially mediated the relation between PTSD and alcohol use problems (β = 0.213, p \u3c .001), consistent with the self-medication hypothesis, and that this relationship was stronger for males (β = 0.804, p \u3c .001) than for females (β = 0.463, p \u3c .001). Results were substantiated using longitudinal data. Genotypic analyses to be presented will include univariate genome wide complex trait analyses (GCTA) to establish SNP-based heritability associated with TRD and PTSD, separately, as well as bivariate GCTA to examine potential overlap in heritability between TRD and PTSD.https://scholarscompass.vcu.edu/gradposters/1047/thumbnail.jp
Study of loss in superconducting coplanar waveguide resonators
Superconducting coplanar waveguide (SCPW) resonators have a wide range of
applications due to the combination of their planar geometry and high quality
factors relative to normal metals. However, their performance is sensitive to
both the details of their geometry and the materials and processes that are
used in their fabrication. In this paper, we study the dependence of SCPW
resonator performance on materials and geometry as a function of temperature
and excitation power. We measure quality factors greater than at
high excitation power and at a power comparable to that generated
by a single microwave photon circulating in the resonator. We examine the
limits to the high excitation power performance of the resonators and find it
to be consistent with a model of radiation loss. We further observe that while
in all cases the quality factors are degraded as the temperature and power are
reduced due to dielectric loss, the size of this effect is dependent on
resonator materials and geometry. Finally, we demonstrate that the dielectric
loss can be controlled in principle using a separate excitation near the
resonance frequencies of the resonator.Comment: Replacing original version. Changes made based on referee comments.
Fixed typo in equation (3) and added appendi
The Cool ISM in S0 Galaxies. I. A Survey of Molecular Gas
Lenticular galaxies remain remarkably mysterious as a class. Observations to
date have not led to any broad consensus about their origins, properties and
evolution, though they are often thought to have formed in one big burst of
star formation early in the history of the Universe, and to have evolved
relatively passively since then. In that picture, current theory predicts that
stellar evolution returns substantial quantities of gas to the interstellar
medium; most is ejected from the galaxy, but significant amounts of cool gas
might be retained. Past searches for that material, though, have provided
unclear results. We present results from a survey of molecular gas in a
volume-limited sample of field S0 galaxies, selected from the Nearby Galaxies
Catalog. CO emission is detected from 78 percent of the sample galaxies. We
find that the molecular gas is almost always located inside the central few
kiloparses of a lenticular galaxy, meaning that in general it is more centrally
concentrated than in spirals. We combine our data with HI observations from the
literature to determine the total masses of cool and cold gas. Curiously, we
find that, across a wide range of luminosity, the most gas rich galaxies have
about 10 percent of the total amount of gas ever returned by their stars. That
result is difficult to understand within the context of either monolithic or
hierarchical models of evolution of the interstellar medium.Comment: 26 pages of text, 15 pages of tables, 10 figures. Accepted for
publication in the Astrophysical Journa
Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies
We examine the dust-to-gas ratio as a function of metallicity for dwarf
galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies
(BCDGs)]. Using a one-zone model and adopting the instantaneous recycling
approximation, we prepare a set of basic equations which describes processes of
dust formation and destruction in a galaxy. Four terms are included for the
processes: dust formation from heavy elements ejected by stellar mass loss,
dust destruction in supernova remnants, dust destruction in star-forming
regions, and accretion of heavy elements onto preexisting dust grains. Solving
the equations, we compare the result with observational data of nearby dIrrs
and BCDGs. The solution is consistent with the data within the reasonable
ranges of model parameters constrained by the previous examinations. This means
that the model is successful in understanding the dust amount of nearby
galaxies. We also show that the accretion rate of heavy element onto
preexisting dust grains is less effective than the condensation of heavy
elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap
Optimal Pacing for Running 400 m and 800 m Track Races
Physicists seeking to understand complex biological systems often find it
rewarding to create simple "toy models" that reproduce system behavior. Here a
toy model is used to understand a puzzling phenomenon from the sport of track
and field. Races are almost always won, and records set, in 400 m and 800 m
running events by people who run the first half of the race faster than the
second half, which is not true of shorter races, nor of longer. There is
general agreement that performance in the 400 m and 800 m is limited somehow by
the amount of anaerobic metabolism that can be tolerated in the working muscles
in the legs. A toy model of anaerobic metabolism is presented, from which an
optimal pacing strategy is analytically calculated via the Euler-Lagrange
equation. This optimal strategy is then modified to account for the fact that
the runner starts the race from rest; this modification is shown to result in
the best possible outcome by use of an elementary variational technique that
supplements what is found in undergraduate textbooks. The toy model reproduces
the pacing strategies of elite 400 m and 800 m runners better than existing
models do. The toy model also gives some insight into training strategies that
improve performance.Comment: 14 pages, 4 figures, submitted to the American Journal of Physic
Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment
We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained
- …
