4,249 research outputs found

    Inelastic collisions of ultra-cold heteronuclear molecules in an optical trap

    Full text link
    Ultra-cold RbCs molecules in high-lying vibrational levels of the a3Σ+^3\Sigma^+ ground electronic state are confined in an optical trap. Inelastic collision rates of these molecules with both Rb and Cs atoms are determined for individual vibrational levels, across an order of magnitude of binding energies. A simple model for the collision process is shown to accurately reproduce the observed scattering rates

    Evaluation of a new trauma-related drinking to cope measure: Latent structure and heritability

    Get PDF
    Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) commonly co-occur, share latent genetic risk, and are associated with many negative public health outcomes. Via a self-medication framework, trauma-related drinking to cope (TRD), an unexplored phenotype to date, may help explain why these two disorders co-occur, thus serving as an essential target for treatment and prevention efforts. This study sought to create a novel measure of TRD and to investigate its indirect influences on the association between PTSD and AUD, as well as its potential shared molecular genetic risk with PTSD in a genetically-informative study of college students. A sample of 1,896 undergraduate students with a history of trauma and alcohol use provided genotypic data and completed an online assessment battery. The psychometric properties of TRD and how it relates to relevant constructs were examined using descriptive statistics and structural equation modeling. Results of a correlated multiple mediator model indicated that, while accounting for the effects of generalized drinking motives, TRD partially mediated the relation between PTSD and alcohol use problems (β = 0.213, p \u3c .001), consistent with the self-medication hypothesis, and that this relationship was stronger for males (β = 0.804, p \u3c .001) than for females (β = 0.463, p \u3c .001). Results were substantiated using longitudinal data. Genotypic analyses to be presented will include univariate genome wide complex trait analyses (GCTA) to establish SNP-based heritability associated with TRD and PTSD, separately, as well as bivariate GCTA to examine potential overlap in heritability between TRD and PTSD.https://scholarscompass.vcu.edu/gradposters/1047/thumbnail.jp

    Study of loss in superconducting coplanar waveguide resonators

    Full text link
    Superconducting coplanar waveguide (SCPW) resonators have a wide range of applications due to the combination of their planar geometry and high quality factors relative to normal metals. However, their performance is sensitive to both the details of their geometry and the materials and processes that are used in their fabrication. In this paper, we study the dependence of SCPW resonator performance on materials and geometry as a function of temperature and excitation power. We measure quality factors greater than 2×1062\times10^6 at high excitation power and 6×1056\times10^5 at a power comparable to that generated by a single microwave photon circulating in the resonator. We examine the limits to the high excitation power performance of the resonators and find it to be consistent with a model of radiation loss. We further observe that while in all cases the quality factors are degraded as the temperature and power are reduced due to dielectric loss, the size of this effect is dependent on resonator materials and geometry. Finally, we demonstrate that the dielectric loss can be controlled in principle using a separate excitation near the resonance frequencies of the resonator.Comment: Replacing original version. Changes made based on referee comments. Fixed typo in equation (3) and added appendi

    The Cool ISM in S0 Galaxies. I. A Survey of Molecular Gas

    Full text link
    Lenticular galaxies remain remarkably mysterious as a class. Observations to date have not led to any broad consensus about their origins, properties and evolution, though they are often thought to have formed in one big burst of star formation early in the history of the Universe, and to have evolved relatively passively since then. In that picture, current theory predicts that stellar evolution returns substantial quantities of gas to the interstellar medium; most is ejected from the galaxy, but significant amounts of cool gas might be retained. Past searches for that material, though, have provided unclear results. We present results from a survey of molecular gas in a volume-limited sample of field S0 galaxies, selected from the Nearby Galaxies Catalog. CO emission is detected from 78 percent of the sample galaxies. We find that the molecular gas is almost always located inside the central few kiloparses of a lenticular galaxy, meaning that in general it is more centrally concentrated than in spirals. We combine our data with HI observations from the literature to determine the total masses of cool and cold gas. Curiously, we find that, across a wide range of luminosity, the most gas rich galaxies have about 10 percent of the total amount of gas ever returned by their stars. That result is difficult to understand within the context of either monolithic or hierarchical models of evolution of the interstellar medium.Comment: 26 pages of text, 15 pages of tables, 10 figures. Accepted for publication in the Astrophysical Journa

    Dust-to-Gas Ratio and Metallicity in Dwarf Galaxies

    Full text link
    We examine the dust-to-gas ratio as a function of metallicity for dwarf galaxies [dwarf irregular galaxies (dIrrs) and blue compact dwarf galaxies (BCDGs)]. Using a one-zone model and adopting the instantaneous recycling approximation, we prepare a set of basic equations which describes processes of dust formation and destruction in a galaxy. Four terms are included for the processes: dust formation from heavy elements ejected by stellar mass loss, dust destruction in supernova remnants, dust destruction in star-forming regions, and accretion of heavy elements onto preexisting dust grains. Solving the equations, we compare the result with observational data of nearby dIrrs and BCDGs. The solution is consistent with the data within the reasonable ranges of model parameters constrained by the previous examinations. This means that the model is successful in understanding the dust amount of nearby galaxies. We also show that the accretion rate of heavy element onto preexisting dust grains is less effective than the condensation of heavy elements in dwarf galaxies.Comment: 14 pages LaTeX, 4 figures, to appear in Ap

    Optimal Pacing for Running 400 m and 800 m Track Races

    Full text link
    Physicists seeking to understand complex biological systems often find it rewarding to create simple "toy models" that reproduce system behavior. Here a toy model is used to understand a puzzling phenomenon from the sport of track and field. Races are almost always won, and records set, in 400 m and 800 m running events by people who run the first half of the race faster than the second half, which is not true of shorter races, nor of longer. There is general agreement that performance in the 400 m and 800 m is limited somehow by the amount of anaerobic metabolism that can be tolerated in the working muscles in the legs. A toy model of anaerobic metabolism is presented, from which an optimal pacing strategy is analytically calculated via the Euler-Lagrange equation. This optimal strategy is then modified to account for the fact that the runner starts the race from rest; this modification is shown to result in the best possible outcome by use of an elementary variational technique that supplements what is found in undergraduate textbooks. The toy model reproduces the pacing strategies of elite 400 m and 800 m runners better than existing models do. The toy model also gives some insight into training strategies that improve performance.Comment: 14 pages, 4 figures, submitted to the American Journal of Physic

    Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment

    Get PDF
    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained
    corecore