261 research outputs found
Fundamental Physics with the Laser Astrometric Test Of Relativity
The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S.
Michelson-Morley-type experiment designed to test the pure tensor metric nature
of gravitation - a fundamental postulate of Einstein's theory of general
relativity. By using a combination of independent time-series of highly
accurate gravitational deflection of light in the immediate proximity to the
Sun, along with measurements of the Shapiro time delay on interplanetary scales
(to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will
significantly improve our knowledge of relativistic gravity. The primary
mission objective is to i) measure the key post-Newtonian Eddington parameter
\gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for
presence of a new interaction in gravitational theory, and, in its search,
LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test.
The mission will also provide: ii) first measurement of gravity's non-linear
effects on light to ~0.01% accuracy; including both the Eddington \beta
parameter and also the spatial metric's 2nd order potential contribution (never
measured before); iii) direct measurement of the solar quadrupole moment J2
(currently unavailable) to accuracy of a part in 200 of its expected size; iv)
direct measurement of the "frame-dragging" effect on light by the Sun's
gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to
unprecedented accuracy the search for cosmologically relevant scalar-tensor
theories of gravity by looking for a remnant scalar field in today's solar
system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC,
Noodrwijk, The Netherland
Velocity measurements for a solar active region fan loop from Hinode/EIS observations
The velocity pattern of a fan loop structure within a solar active region
over the temperature range 0.15-1.5 MK is derived using data from the EUV
Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned
towards the observer's line-of-sight and shows downflows (redshifts) of around
15 km/s up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above
the measured velocity shifts are consistent with no net flow. This velocity
result applies over a projected spatial distance of 9 Mm and demonstrates that
the cooler, redshifted plasma is physically disconnected from the hotter,
stationary plasma. A scenario in which the fan loops consist of at least two
groups of "strands" - one cooler and downflowing, the other hotter and
stationary -- is suggested. The cooler strands may represent a later
evolutionary stage of the hotter strands. A density diagnostic of Mg VII was
used to show that the electron density at around 0.8 MK falls from 3.2 x 10^9
cm^-3 at the loop base, to 5.0 x 10^8 cm^-3 at a projected height of 15 Mm. A
filling factor of 0.2 is found at temperatures close to the formation
temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma
occupies only a fraction of the apparent loop volume. The fan loop is rooted
within a so-called "outflow region" that displays low intensity and blueshifts
of up to 25 km/s in Fe XII 195.12 A (formed at 1.5 MK), in contrast to the
loop's redshifts of 15 km/s at 0.8 MK. A new technique for obtaining an
absolute wavelength calibration for the EIS instrument is presented and an
instrumental effect, possibly related to a distorted point spread function,
that affects velocity measurements is identified.Comment: 42 pages, 15 figures, submitted to Ap
Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars
Convective line asymmetries in the optical spectrum of two metal-poor stars,
Gmb1830 and HD140283, are compared to those observed for solar metallicity
stars. The line bisectors of the most metal-poor star, the subgiant HD140283,
show a significantly larger velocity span that the expectations for a
solar-metallicity star of the same spectral type and luminosity class. The
enhanced line asymmetries are interpreted as the signature of the lower metal
content, and therefore opacity, in the convective photospheric patterns. These
findings point out the importance of three-dimensional convective velocity
fields in the interpretation of the observed line asymmetries in metal-poor
stars, and in particular, urge for caution when deriving isotopic ratios from
observed line shapes and shifts using one-dimensional model atmospheres.
The mean line bisector of the photospheric atomic lines is compared with
those measured for the strong Mg I b1 and b2 features. The upper part of the
bisectors are similar, and assuming they overlap, the bottom end of the
stronger lines, which are formed higher in the atmosphere, goes much further to
the red. This is in agreement with the expected decreasing of the convective
blue-shifts in upper atmospheric layers, and compatible with the high velocity
redshifts observed in the chromosphere, transition region, and corona of
late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in
The Astrophysical Journa
A Mission to Explore the Pioneer Anomaly
The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep
space to date. These spacecraft had exceptional acceleration sensitivity.
However, analysis of their radio-metric tracking data has consistently
indicated that at heliocentric distances of astronomical units,
the orbit determinations indicated the presence of a small, anomalous, Doppler
frequency drift. The drift is a blue-shift, uniformly changing with a rate of
Hz/s, which can be interpreted as a
constant sunward acceleration of each particular spacecraft of . This signal has become known as the Pioneer
anomaly. The inability to explain the anomalous behavior of the Pioneers with
conventional physics has contributed to growing discussion about its origin.
There is now an increasing number of proposals that attempt to explain the
anomaly outside conventional physics. This progress emphasizes the need for a
new experiment to explore the detected signal. Furthermore, the recent
extensive efforts led to the conclusion that only a dedicated experiment could
ultimately determine the nature of the found signal. We discuss the Pioneer
anomaly and present the next steps towards an understanding of its origin. We
specifically focus on the development of a mission to explore the Pioneer
Anomaly in a dedicated experiment conducted in deep space.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020", 19-21 April 2005, ESTEC,
Noordwijk, The Netherland
Recommended from our members
Multi-scale sensible heat fluxes in the urban environment from large aperture scintillometry and eddy covariance
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions
Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection
Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. Strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease
The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications
Background: Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results: We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion: Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested
Aplicación de una metodología participativa ad hoc, para determinación de necesidades en el proceso de diseño de paisaje de un jardín botánico en Michoacán, México
In order to be successful in a landscape design project, it is required to know the site, and the users that are supposed to use it. Exercises requiring multi-user designs need strategies to allow the designer, to know in a better way, the needs the group. When there is a design that just considers the criteria of the designer, and no one else, the risk for the designed landscape of not being empowered and not appropriated by the social group to which that project is oriented, can be very high. Different authors have proposed the use of workshops and participatory processes to allow participants to manifest their desires and needs, and so, be an invaluable source of information for the landscape designer. This paper presents an ad hoc methodology, which was, as a source of information for the design of a botanical garden in Pátzcuaro, Michoacán, Mexico. Here we present the fundamentals, applications and results of this exercise
Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
It has been suggested that dust storms efficiently transport water vapor from the near‐surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid‐September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S‐60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole‐to‐pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S
- …
