72,188 research outputs found
Seismic effects on the rotational dynamics of the earth and its gravitational field
The effects of earthquakes on the rotational motion of the earth were studied. The connection between the fault parameters and the corresponding changes in the moments and products of inertia were analytically developed. The reciprocal theorem of elasticity and Volterra's formula were applied as well as the displacement and stress fields for the second degree static response of the earth model being used. The numerical results of the investigation yield the magnitude and direction of the pole shift as well as the change in the length of the day. The changes in the second degree coefficients of the geopotential were computed. Source parameters corresponding to the Alaskan earthquake on March 28, 1964 were used to generate numerical results
Radial deformation of the earth by oceanic tidal loading
A high-degree spherical harmonic series is used to compute the radial deformation of the Earth by oceanic tidal loading. By exploiting fast numerical transforms, this approach is found to be much more efficient, but no less accurate, than the traditional Green's function approach. The method is used to derive an atlas of load tide maps for 10 constitutents of the NSWC ocean tide model
Comparison of Gaussian process modeling software
Gaussian process fitting, or kriging, is often used to create a model from a
set of data. Many available software packages do this, but we show that very
different results can be obtained from different packages even when using the
same data and model. We describe the parameterization, features, and
optimization used by eight different fitting packages that run on four
different platforms. We then compare these eight packages using various data
functions and data sets, revealing that there are stark differences between the
packages. In addition to comparing the prediction accuracy, the predictive
variance--which is important for evaluating precision of predictions and is
often used in stopping criteria--is also evaluated
Automated DNA Motif Discovery
Ensembl's human non-coding and protein coding genes are used to automatically
find DNA pattern motifs. The Backus-Naur form (BNF) grammar for regular
expressions (RE) is used by genetic programming to ensure the generated strings
are legal. The evolved motif suggests the presence of Thymine followed by one
or more Adenines etc. early in transcripts indicate a non-protein coding gene.
Keywords: pseudogene, short and microRNAs, non-coding transcripts, systems
biology, machine learning, Bioinformatics, motif, regular expression, strongly
typed genetic programming, context-free grammar.Comment: 12 pages, 2 figure
Euclidean Thermal Green Functions of Photons in Generalized Euclidean Rindler Spaces for any Feynman-like Gauge
The thermal Euclidean Green functions for Photons propagating in the Rindler
wedge are computed employing an Euclidean approach within any covariant
Feynman-like gauge. This is done by generalizing a formula which holds in the
Minkowskian case. The coincidence of the found (\be=2\pi)-Green functions and
the corresponding Minkowskian vacuum Green functions is discussed in relation
to the remaining static gauge ambiguity already found in previous papers.
Further generalizations to more complicated manifolds are discussed. Ward
identities are verified in the general case.Comment: 12 pages, standard latex, no figures, some signs changed, more
comments added, final version to appear on Int. J. Mod. Phys.
Complexity in forecasting and predictive models
Te challenge of this special issue has been to know the
state of the problem related to forecasting modeling and
the creation of a model to forecast the future behavior
that supports decision making by supporting real-world applications.
Tis issue has been highlighted by the quality of its
research work on the critical importance of advanced analytical methods, such as neural networks, sof computing,
evolutionary algorithms, chaotic models, cellular automata,
agent-based models, and fnite mixture minimum squares
(FIMIX-PLS).info:eu-repo/semantics/publishedVersio
Simple quantum model for light depolarization
Depolarization of quantum fields is handled through a master equation of the
Lindblad type. The specific feature of the proposed model is that it couples
dispersively the field modes to a randomly distributed atomic reservoir, much
in the classical spirit of dealing with this problem. The depolarizing dynamics
resulting from this model is analyzed for relevant states.Comment: Improved version. Accepted for publication in the Journal of the
Optical Society of America
Virtual Hand Illusion Induced by Visuomotor Correlations
Background: Our body schema gives the subjective impression of being highly stable. However, a number of easily-evoked illusions illustrate its remarkable malleability. In the rubber-hand illusion, illusory ownership of a rubber-hand is evoked by synchronous visual and tactile stimulation on a visible rubber arm and on the hidden real arm. Ownership is concurrent with a proprioceptive illusion of displacement of the arm position towards the fake arm. We have previously shown that this illusion of ownership plus the proprioceptive displacement also occurs towards a virtual 3D projection of an arm when the appropriate synchronous visuotactile stimulation is provided. Our objective here was to explore whether these illusions (ownership and proprioceptive displacement) can be induced by only synchronous visuomotor stimulation, in the absence of tactile stimulation.Methodology/Principal Findings: To achieve this we used a data-glove that uses sensors transmitting the positions of fingers to a virtually projected hand in the synchronous but not in the asynchronous condition. The illusion of ownership was measured by means of questionnaires. Questions related to ownership gave significantly larger values for the synchronous than for the asynchronous condition. Proprioceptive displacement provided an objective measure of the illusion and had a median value of 3.5 cm difference between the synchronous and asynchronous conditions. In addition, the correlation between the feeling of ownership of the virtual arm and the size of the drift was significant.Conclusions/Significance: We conclude that synchrony between visual and proprioceptive information along with motor activity is able to induce an illusion of ownership over a virtual arm. This has implications regarding the brain mechanisms underlying body ownership as well as the use of virtual bodies in therapies and rehabilitation
- …
