7,858 research outputs found

    On infinite words avoiding a finite set of squares

    Full text link
    Building an infinite square-free word by appending one letter at a time while simultaneously avoiding the creation of squares is most likely to fail. When the alphabet has two letters this approach is impossible. When the alphabet has three or more letters, one will most probably create a word in which the addition of any letter invariably creates a square. When one restricts the set of undesired squares to a finite one, this can be possible. We study the constraints on the alphabet and the set of squares which permit this approach to work.Comment: 18 page

    Equivariant configuration spaces

    Get PDF
    The compression theorem is used to prove results for equivariant configuration spaces that are analogous to the well-known non-equivariant results of May, Milgram and Segal

    Effective Generation of Subjectively Random Binary Sequences

    Full text link
    We present an algorithm for effectively generating binary sequences which would be rated by people as highly likely to have been generated by a random process, such as flipping a fair coin.Comment: Introduction and Section 6 revise

    Transient heat flux measurement using a surface junction thermocouple

    Get PDF
    A new form of surface junction thermocouple sensor has been developed and tested. The novel feature of the design is the use of a tapered fit between two coaxial thermocouple elements to form a thin, robust junction. The gauge has a response time on the order of 1 µs and is suitable for measuring large transient heat fluxes in hypervelocity wind tunnels. Asymptotic analysis is used to demonstrate the operating principles and to assess the errors associated with the finite thickness of the surface junction. Spectral deconvolution methods are used to infer a mean square optimal estimate of the surface heat flux from time resolved surface temperature measurements. This improved signal processing method is applicable to transient heat flux gauges of all types. Potential reducible error sources and other systematic errors are described. Measurements of the heat flux about the forebody of a cylindrical body in a hypervelocity flow demonstrate the functioning of the gauge and are used to obtain statistical estimates of the repeatability of the technique. The measured heat fluxes are compared with established theoretical predictions

    Aspects of planar, oblique and interacting shock waves in an ideal dissociating gas

    Get PDF
    We develop a compact dimensionless framework for the analysis of canonical thermo-chemical nonequilibrium flow fields involving normal, oblique and interacting shock waves. Discontinuous solutions of the conservation equations are coupled with thermodynamic and kinetic models for an ideal dissociating gas. Convenient forms are provided for the variation of the relevant dimensionless parameters across shock waves in dissociating gases. The treatment is carried through in a consistent manner for the pressure–flow deflection angle plane representation of shock wave interaction problems. The contribution of the current paper is a careful nondimensionalization of the problem that yields a tractable formulation and allows results with considerable generality to be obtained

    James bundles

    Get PDF
    We study cubical sets without degeneracies, which we call {square}-sets. These sets arise naturally in a number of settings and they have a beautiful intrinsic geometry; in particular a {square}-set C has an infinite family of associated {square}-sets Ji(C), for i = 1, 2, ..., which we call James complexes. There are mock bundle projections pi: |Ji(C)| -> |C| (which we call James bundles) defining classes in unstable cohomotopy which generalise the classical James–Hopf invariants of {Omega}(S2). The algebra of these classes mimics the algebra of the cohomotopy of {Omega}(S2) and the reduction to cohomology defines a sequence of natural characteristic classes for a {square}-set. An associated map to BO leads to a generalised cohomology theory with geometric interpretation similar to that for Mahowald orientation

    The influence of non-equilibrium dissociation on the flow produced by shock impingement on a blunt body

    Get PDF
    We describe an investigation of the effects of non-equilibrium thermochemistry on the interaction between a weak oblique shock and the strong bow shock formed by a blunt body in hypersonic flow. This type of shock-on-shock interaction, also known as an Edney type IV interaction, causes locally intense enhancement of the surface heat transfer rate. A supersonic jet is formed by the nonlinear interaction that occurs between the two shock waves and elevated heat transfer rates and surface pressures are produced by the impingement of the supersonic jet on the body. The current paper is motivated by previous studies suggesting that real gas effects would significantly increase the severity of the phenomenon. Experiments are described in which a free-piston shock tunnel is used to produce shock interaction flows with significant gas dissociation. Surprisingly, the data that are obtained show no significant stagnation enthalpy dependence of the ratio of the peak heat transfer rates with and without shock interaction, in contrast to existing belief. The geometry investigated is the nominally two-dimensional flow about a cylinder with coplanar impinging shock wave. Holographic interferometry is used to visualize the flow field and to quantify increases in the stagnation density caused by shock interaction. Time-resolved heat transfer measurements are obtained from surface junction thermocouples about the model forebody. An improved model is developed to elucidate the finite-rate thermochemical processes occurring in the interaction region. It is shown that severe heat transfer intensification is a result of a jet shock structure that minimizes the entropy rise of the supersonic jet fluid whereas strong thermochemical effects are promoted by conditions that maximize the entropy rise (and hence temperature). This dichotomy underlies the smaller than anticipated influence of real gas effects on the heat transfer intensification. The model accurately predicts the measured heat transfer rates. Improved understanding of the influence of real gas effects on the shock interaction phenomenon reduces a significant element of risk in the design of hypersonic vehicles. The peak heat transfer rate for the Edney type IV interaction is shown to be well-correlated, in the weak impinging shock regime, by an expression of the form [equation] for use in practical design calculations

    The effect of flight line spacing on radioactivity inventory and spatial feature characteristics of airborne gamma-ray spectrometry data

    Get PDF
    Airborne Gamma Spectrometry (AGS) is well suited to the mapping of radioactivity in the environment. Flight parameters (e.g. speed and line spacing) directly affect the rate of area coverage, cost, and data quality of any survey. The influences of line spacing have been investigated for data from inter‐tidal, coastal and upland environments with a range of <sup>137</sup>Cs activity concentrations and depositional histories. Estimates of the integrated <sup>137</sup>Cs activity (‘inventory’) within specified areas and the shapes of depositional features were calculated for subsets of the data at different line spacings. Features with dimensions greater than the line spacing show variations in inventory and area of less than 3%, and features with dimensions less than the line spacing show larger variations and a decreased probability of detection. The choice of line spacing for a task is dependent on the dimensions of the features of interest and required edge definition. Options for line spacing for different tasks are suggested. It is noted that for regional mapping, even 5–10 km line spacing can produce useful data

    UK utility data integration: overcoming schematic heterogeneity

    Get PDF
    In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced
    corecore