238 research outputs found
The large core limit of spiral waves in excitable media: A numerical approach
We modify the freezing method introduced by Beyn & Thuemmler, 2004, for
analyzing rigidly rotating spiral waves in excitable media. The proposed method
is designed to stably determine the rotation frequency and the core radius of
rotating spirals, as well as the approximate shape of spiral waves in unbounded
domains. In particular, we introduce spiral wave boundary conditions based on
geometric approximations of spiral wave solutions by Archimedean spirals and by
involutes of circles. We further propose a simple implementation of boundary
conditions for the case when the inhibitor is non-diffusive, a case which had
previously caused spurious oscillations.
We then utilize the method to numerically analyze the large core limit. The
proposed method allows us to investigate the case close to criticality where
spiral waves acquire infinite core radius and zero rotation frequency, before
they begin to develop into retracting fingers. We confirm the linear scaling
regime of a drift bifurcation for the rotation frequency and the core radius of
spiral wave solutions close to criticality. This regime is unattainable with
conventional numerical methods.Comment: 32 pages, 17 figures, as accepted by SIAM Journal on Applied
Dynamical Systems on 20/03/1
State selection in the noisy stabilized Kuramoto-Sivashinsky equation
In this work, we study the 1D stabilized Kuramoto Sivashinsky equation with
additive uncorrelated stochastic noise. The Eckhaus stable band of the
deterministic equation collapses to a narrow region near the center of the
band. This is consistent with the behavior of the phase diffusion constants of
these states. Some connections to the phenomenon of state selection in driven
out of equilibrium systems are made.Comment: 8 pages, In version 3 we corrected minor/typo error
Inertialess multilayer film flow with surfactant: Stability and traveling waves
Multilayer film flow down an inclined plane in the presence of an insoluble surfactant is investigated with particular emphasis on determining flow stability and investigating the possibility of traveling-wave solutions. The investigation is conducted for two or three layers under conditions of Stokes flow and, separately, on the basis of a long-wave assumption. A normal mode linear stability analysis for Stokes flow shows that adding surfactant to one of the film surfaces can destabilize an otherwise stable flow configuration. For the long-wave system, periodic traveling-wave branches are detected and traced, revealing solutions with pulselike solitary waves on each film surface traveling in phase with each other, traveling waves with capillary ridge structures, and solutions with two of the film surfaces almost in contact. Time-periodic traveling-wave solutions are also found. The stability of the traveling waves is determined by solving initial-value problems and by computing eigenvalue spectra. Boundary element simulations for Stokes flow confirm the existence of traveling waves outside the long-wave regime
Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential
Coupled-mode systems are used in physical literature to simplify the
nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic
potential and to approximate localized solutions called gap solitons by
analytical expressions involving hyperbolic functions. We justify the use of
the one-dimensional stationary coupled-mode system for a relevant elliptic
problem by employing the method of Lyapunov--Schmidt reductions in Fourier
space. In particular, existence of periodic/anti-periodic and decaying
solutions is proved and the error terms are controlled in suitable norms. The
use of multi-dimensional stationary coupled-mode systems is justified for
analysis of bifurcations of periodic/anti-periodic solutions in a small
multi-dimensional periodic potential.Comment: 18 pages, no figure
Coarse-grained dynamics of an activity bump in a neural field model
We study a stochastic nonlocal PDE, arising in the context of modelling
spatially distributed neural activity, which is capable of sustaining
stationary and moving spatially-localized ``activity bumps''. This system is
known to undergo a pitchfork bifurcation in bump speed as a parameter (the
strength of adaptation) is changed; yet increasing the noise intensity
effectively slowed the motion of the bump. Here we revisit the system from the
point of view of describing the high-dimensional stochastic dynamics in terms
of the effective dynamics of a single scalar "coarse" variable. We show that
such a reduced description in the form of an effective Langevin equation
characterized by a double-well potential is quantitatively successful. The
effective potential can be extracted using short, appropriately-initialized
bursts of direct simulation. We demonstrate this approach in terms of (a) an
experience-based "intelligent" choice of the coarse observable and (b) an
observable obtained through data-mining direct simulation results, using a
diffusion map approach.Comment: Corrected aknowledgement
Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD
Extending our previous work in the strictly parabolic case, we show that a
linearly unstable Lax-type viscous shock solution of a general quasilinear
hyperbolic--parabolic system of conservation laws possesses a
translation-invariant center stable manifold within which it is nonlinearly
orbitally stable with respect to small perturbations, converging
time-asymptotically to a translate of the unperturbed wave. That is, for a
shock with unstable eigenvalues, we establish conditional stability on a
codimension- manifold of initial data, with sharp rates of decay in all
. For , we recover the result of unconditional stability obtained by
Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case
is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p
Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation
In a companion paper, we established nonlinear stability with detailed
diffusive rates of decay of spectrally stable periodic traveling-wave solutions
of reaction diffusion systems under small perturbations consisting of a
nonlocalized modulation plus a localized perturbation. Here, we determine
time-asymptotic behavior under such perturbations, showing that solutions
consist to leading order of a modulation whose parameter evolution is governed
by an associated Whitham averaged equation
Depinning of three-dimensional drops from wettability defects
Substrate defects crucially influence the onset of sliding drop motion under
lateral driving. A finite force is necessary to overcome the pinning influence
even of microscale heterogeneities. The depinning dynamics of three-dimensional
drops is studied for hydrophilic and hydrophobic wettability defects using a
long-wave evolution equation for the film thickness profile. It is found that
the nature of the depinning transition explains the experimentally observed
stick-slip motion.Comment: 6 pages, 9 figures, submitted to ep
Vortices in a Bose-Einstein condensate confined by an optical lattice
We investigate the dynamics of vortices in repulsive Bose-Einstein
condensates in the presence of an optical lattice (OL) and a parabolic magnetic
trap. The dynamics is sensitive to the phase of the OL potential relative to
the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL
potential, a local minimum is generated at the trap's center, creating a stable
equilibrium for the vortex, while in the case of the sinusoidal potential, the
vortex is expelled from the center, demonstrating spiral motion. Cases where
the vortex is created far from the trap's center are also studied, revealing
slow outward-spiraling drift. Numerical results are explained in an analytical
form by means of a variational approximation. Finally, motivated by a discrete
model (which is tantamount to the case of the strong OL lattice), we present a
novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure
A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations
The purpose of this paper is to enhance a correspondence between the dynamics
of the differential equations on and those
of the parabolic equations on a bounded
domain . We give details on the similarities of these dynamics in the
cases , and and in the corresponding cases ,
and dim() respectively. In addition to
the beauty of such a correspondence, this could serve as a guideline for future
research on the dynamics of parabolic equations
- …
