929 research outputs found
Interference of Bose-Einstein Condensates on an Atom Chip
We have used a microfabricated atom chip to split a single Bose-Einstein
condensate of sodium atoms into two spatially separated condensates. Dynamical
splitting was achieved by deforming the trap along the tightly confining
direction into a purely magnetic double-well potential. We observed the matter
wave interference pattern formed upon releasing the condensates from the
microtraps. The intrinsic features of the quartic potential at the merge point,
such as zero trap frequency and extremely high field-sensitivity, caused random
variations of the relative phase between the two split condensates. Moreover,
the perturbation from the abrupt change of the trapping potential during the
splitting was observed to induce vortices.Comment: 4 pages, 5 figure
Psychological Safety and Norm Clarity in Software Engineering Teams
In the software engineering industry today, companies primarily conduct their
work in teams. To increase organizational productivity, it is thus crucial to
know the factors that affect team effectiveness. Two team-related concepts that
have gained prominence lately are psychological safety and team norms. Still,
few studies exist that explore these in a software engineering context.
Therefore, with the aim of extending the knowledge of these concepts, we
examined if psychological safety and team norm clarity associate positively
with software developers' self-assessed team performance and job satisfaction,
two important elements of effectiveness.
We collected industry survey data from practitioners (N = 217) in 38
development teams working for five different organizations. The result of
multiple linear regression analyses indicates that both psychological safety
and team norm clarity predict team members' self-assessed performance and job
satisfaction. The findings also suggest that clarity of norms is a stronger
(30\% and 71\% stronger, respectively) predictor than psychological safety.
This research highlights the need to examine, in more detail, the
relationship between social norms and software development. The findings of
this study could serve as an empirical baseline for such, future work.Comment: Submitted to CHASE'201
Velocity Dispersion of Dissolving OB Associations Affected by External Pressure of Formation Environment
This paper presents a possible way to understand dissolution of OB
associations (or groups). Assuming rapid escape of parental cloud gas from
associations, we show that the shadow of the formation environment for
associations can be partially imprinted on the velocity dispersion at their
dissolution. This conclusion is not surprising as long as associations are
formed in a multiphase interstellar medium, because the external pressure
should suppress expansion caused by the internal motion of the parental clouds.
Our model predicts a few km s as the internal velocity dispersion.
Observationally, the internal velocity dispersion is km s which
is smaller than our prediction. This suggests that the dissipation of internal
energy happens before the formation of OB associations.Comment: 6 pages. AJ accepte
Relationship form and function: Exploring meaning-making in young adults\u27 romantic histories
Forming stable, supportive romantic relationships is an important determinant of well-being for adults. Yet, there has been limited research about if and how prior romantic experiences help individuals develop the capacity to enter into such unions. Using grounded theory methods, relationship history interviews were conducted with 35 young adults who provided data about 256 romantic and sexual relationships. The different relationship forms (e.g., hooking up, casual dating, committed partnering) were found to contribute in nuanced ways to romantic development. Specifically, romantic development was characterized by gaining romantic experience, identifying preferences for partners and partnership, and learning to maintain healthy relational boundaries through a variety of romantic and sexual relationships. These findings contribute to existing knowledge by highlighting the meaning-making processes that promote development through tangible experiences and self-discovery
Variability in the stellar initial mass function at low and high mass: 3-component IMF models
Three component models of the IMF are made to consider possible origins for
the observed relative variations in the numbers of brown dwarfs,
solar-to-intermediate mass stars, and high mass stars. Three distinct physical
processes are noted. The characteristic mass for most star formation is
identified with the thermal Jeans mass in the molecular cloud core, and this
presumably leads to the middle mass range by the usual collapse and accretion
processes. Pre-stellar condensations (PSCs) observed in mm-wave continuum
studies presumably form at this mass. Significantly smaller self-gravitating
masses require much larger pressures and may arise following dynamical
processes inside these PSCs, including disk formation, tight-cluster ejection,
and photoevaporation as studied elsewhere, but also gravitational collapse of
shocked gas in colliding PSCs. Significantly larger stellar masses form in
relatively low abundance by normal cloud processes, possibly leading to steep
IMFs in low-pressure field regions, but this mass range can be significantly
extended in high pressure cloud cores by gravitationally-focussed gas accretion
onto PSCs and by the coalescence of PSCs. These models suggest that the
observed variations in brown dwarf, solar-to-intermediate mass, and high mass
populations are the result of dynamical effects that depend on environmental
density and velocity dispersion. They accommodate observations ranging from
shallow IMFs in cluster cores to Salpeter IMFs in average clusters and whole
galaxies to steep and even steeper IMFs in field and remote field regions. They
also suggest how the top-heavy IMFs in some starburst clusters may originate
and they explain bottom-heavy IMFs in low surface brightness galaxies.Comment: 10 pages, 2 figures, accepted by Monthly Notices of the Royal
Astronomical Societ
Fifty Years of IMF Variation: The Intermediate-Mass Stars
I track the history of star count estimates of the Milky Way field star and
open cluster IMFs, concentrating on the neglected mass range from 1 to 15
M. The prevalent belief in a universal IMF appears to be without
basis for this mass range. Two recent estimates of the field star IMF using
different methods and samples give values of the average logarithmic slope
between -1.7 and -2.1 in the mass range 1.1 to 4 M. Two
older estimates between 2 and 15 M disagree severely; the field IMF
in this range is essentially unknown from star counts. Variations in
among open cluster IMFs in this mass range have not decreased despite numerous
detailed studies, even for studies using homogeneous data and reduction
procedures and including only clusters with a significant mass range. These
cluster variations \textit{might} be due to the combined effects of sampling,
systematic errors, stellar evolution uncertainties, dynamical evolution, and
unresolved binaries. If so, then the cluster data are consistent with a
universal IMF, but are also consistent with sizeable variations. The cluster
data do not allow an estimate of an average IMF or because the average
depends on the choice of weighting procedure and other effects. If the spread
in cluster IMFs is in excess of the effects listed above, real IMF variations
must occur that do not depend much on physical conditions explored so far. The
complexity of the star formation process seen in observations and simulations
suggests that large realization-to-realization differences might be expected,
in which case an individual cluster IMF would be in part the product of
evolutionary contingency in star formation, and the function of interest is the
probability distribution of IMF parameters.Comment: 18 pages, including 4 figures: invited talk presented at the
conference on "IMF@50: The Stellar Initial Mass Function Fifty Years Later"
held at Abbazia di Spineto, Siena, Italy, May 2004; to be published by Kluwer
Academic Publishers, edited by E. Corbelli, F. Palla, and H. Zinnecke
LLMs and the Abstraction and Reasoning Corpus: Successes, Failures, and the Importance of Object-based Representations
Can a Large Language Model (LLM) solve simple abstract reasoning problems? We
explore this broad question through a systematic analysis of GPT on the
Abstraction and Reasoning Corpus (ARC), a representative benchmark of abstract
reasoning ability from limited examples in which solutions require some "core
knowledge" of concepts such as objects, goal states, counting, and basic
geometry. GPT-4 solves only 13/50 of the most straightforward ARC tasks when
using textual encodings for their two-dimensional input-output grids. Our
failure analysis reveals that GPT-4's capacity to identify objects and reason
about them is significantly influenced by the sequential nature of the text
that represents an object within a text encoding of a task. To test this
hypothesis, we design a new benchmark, the 1D-ARC, which consists of
one-dimensional (array-like) tasks that are more conducive to GPT-based
reasoning, and where it indeed performs better than on the (2D) ARC. To
alleviate this issue, we propose an object-based representation that is
obtained through an external tool, resulting in nearly doubling the performance
on solved ARC tasks and near-perfect scores on the easier 1D-ARC. Although the
state-of-the-art GPT-4 is unable to "reason" perfectly within non-language
domains such as the 1D-ARC or a simple ARC subset, our study reveals that the
use of object-based representations can significantly improve its reasoning
ability. Visualizations, GPT logs, and data are available at
https://khalil-research.github.io/LLM4ARC.Comment: 17 pages, 11 figure
High-fidelity imaging of a band insulator in a three-dimensional optical lattice clock
We report on the observation of a high-density, band insulating state in a
three-dimensional optical lattice clock. Filled with a nuclear-spin polarized
degenerate Fermi gas of 87Sr, the 3D lattice has one atom per site in the
ground motional state, thus guarding against frequency shifts due to contact
interactions. At this high density where the average distance between atoms is
comparable to the probe wavelength, standard imaging techniques suffer from
large systematic errors. To spatially probe frequency shifts in the clock and
measure thermodynamic properties of this system, accurate imaging techniques at
high optical depths are required. Using a combination of highly saturated
fluorescence and absorption imaging, we confirm the density distribution in our
3D optical lattice in agreement with a single spin band insulating state.
Combining our clock platform with this high filling fraction opens the door to
studying new classes of long-lived, many-body states arising from dipolar
interactions.Comment: 10 pages, 8 figure
- …
