7,846 research outputs found

    Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem

    Full text link
    We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson model of decoherence, is in fact completely model-independent and generically valid for arbitrary dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit fidelity versus number of applied pulses for sufficiently short delay times because the series, with each additional pulse, cancels successive orders of a time expansion for the fidelity decay. The "magical" universality of this property, which was not appreciated earlier, requires that a linearly growing set of "unknowns" (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear equations that involve arbitrary dephasing Hamiltonian operators.Comment: Published in PRL, revise

    Intraindustry Trade and the Environment: Is There a Selection Effect?

    Get PDF
    Replaced with revised version of paper 08/06/10.Environment, Trade, Monopolistic Competition, Selection effect, Environmental quality, Panel data, OECD, Pollution, Environmental Economics and Policy, International Development, International Relations/Trade, Q56, Q51, Q53, Q58, F12, F18,

    A number conserving theory for topologically protected degeneracy in one-dimensional fermions

    Full text link
    Semiconducting nanowires in proximity to superconductors are among promising candidates to search for Majorana fermions and topologically protected degeneracies which may ultimately be used as building blocks for topological quantum computers. The prediction of neutral Majorana fermions in the proximity-induced superconducting systems ignores number-conservation and thus leaves open the conceptual question of how a topological degeneracy that is robust to all local perturbations arises in a number-conserving system. In this work, we study how local attractive interactions generate a topological ground-state near-degeneracy in a quasi one-dimensional superfluid using bosonization of the fermions. The local attractive interactions opens a topological quasiparticle gap in the odd channel wires (with more than one channel) with end Majorana modes associated with a topological near-degeneracy. We explicitly study the robustness of the topological degeneracy to local perturbations and find that such local perturbations result in quantum phase slips which split of the topological degeneracy by an amount that does not decrease exponentially with the length of the wire, but still decreases rapidly if the number of channels is large. Therefore a bulk superconductor with a large number of channels is crucial for true topological degeneracy.Comment: 11 pages, 2 figure

    Magnetic field-assisted manipulation and entanglement of Si spin qubits

    Full text link
    Architectures of donor-electron based qubits in silicon near an oxide interface are considered theoretically. We find that the precondition for reliable logic and read-out operations, namely the individual identification of each donor-bound electron near the interface, may be accomplished by fine-tuning electric and magnetic fields, both applied perpendicularly to the interface. We argue that such magnetic fields may also be valuable in controlling two-qubit entanglement via donor electron pairs near the interface.Comment: 4 pages, 4 figures. 1 ref and 1 footnote adde

    Magnetization in electron- and Mn- doped SrTiO3

    Get PDF
    Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure

    Localization in one-dimensional incommensurate lattices beyond the Aubry-Andr\'e model

    Full text link
    Localization properties of particles in one-dimensional incommensurate lattices without interaction are investigated with models beyond the tight-binding Aubry-Andr\'e (AA) model. Based on a tight-binding t_1 - t_2 model with finite next-nearest-neighbor hopping t_2, we find the localization properties qualitatively different from those of the AA model, signaled by the appearance of mobility edges. We then further go beyond the tight-binding assumption and directly study the system based on the more fundamental single-particle Schr\"odinger equation. With this approach, we also observe the presence of mobility edges and localization properties dependent on incommensuration.Comment: 5 pages, 6 figure

    Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p-n junctions

    Get PDF
    A theory of spin-polarized transport in inhomogeneous magnetic semiconductors is developed and applied to magnetic/nonmagnetic p-n junctions. Several phenomena with possible spintronic applications are predicted, including spinvoltaic effect, spin valve effect, and giant magnetoresistance. It is demonstrated that only nonequilibrium spin can be injected across the space-charge region of a p-n junction, so that there is no spin injection (or extraction) at low bias.Comment: Minor Revisions. To appear in Phys. Rev. Let
    corecore