19 research outputs found
Structured Prediction Problem Archive
Structured prediction problems are one of the fundamental tools in machinelearning. In order to facilitate algorithm development for their numericalsolution, we collect in one place a large number of datasets in easy to readformats for a diverse set of problem classes. We provide archival links todatasets, description of the considered problems and problem formats, and ashort summary of problem characteristics including size, number of instancesetc. For reference we also give a non-exhaustive selection of algorithmsproposed in the literature for their solution. We hope that this centralrepository will make benchmarking and comparison to established works easier.We welcome submission of interesting new datasets and algorithms for inclusionin our archive.<br
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems
International audienceSzeliski et al. published an influential study in 2006 on energy minimization methods for Markov Random Fields (MRF). This study provided valuable insights in choosing the best optimization technique for certain classes of problems. While these insights remain generally useful today, the phenomenal success of random field models means that the kinds of inference problems that have to be solved changed significantly. Specifically , the models today often include higher order interactions, flexible connectivity structures, large label-spaces of different car-dinalities, or learned energy tables. To reflect these changes, we provide a modernized and enlarged study. We present an empirical comparison of more than 27 state-of-the-art optimization techniques on a corpus of 2,453 energy minimization instances from diverse applications in computer vision. To ensure reproducibility, we evaluate all methods in the OpenGM 2 framework and report extensive results regarding runtime and solution quality. Key insights from our study agree with the results of Szeliski et al. for the types of models they studied. However, on new and challenging types of models our findings disagree and suggest that polyhedral methods and integer programming solvers are competitive in terms of runtime and solution quality over a large range of model types
Joint training of generic CNN-CRF models with stochastic optimization
We propose a new CNN-CRF end-to-end learning framework, which is based on joint stochastic optimization with respect to both Convolutional Neural Network (CNN) and Conditional Random Field (CRF) parameters. While stochastic gradient descent is a standard technique for CNN training, it was not used for joint models so far. We show that our learning method is (i) general, i.e. it applies to arbitrary CNN and CRF architectures and potential functions; (ii) scalable, i.e. it has a low memory footprint and straightforwardly parallelizes on GPUs; (iii) easy in implementation. Additionally, the unified CNN-CRF optimization approach simplifies a potential hardware implementation. We empirically evaluate our method on the task of semantic labeling of body parts in depth images and show that it compares favorably to competing techniques
Character templates learning for textual images recognition as an example of learning in structural recognition
Fully unsupervised annotation of C. elegans
In this work we present a novel approach for unsupervised multi-graph matching, which applies to problems for which a Gaussian distribution of keypoint features can be assumed. We leverage cycle consistency as loss for self-supervised learning, and determine Gaussian parameters through Bayesian Optimization, yielding a highly efficient approach that scales to large datasets. Our fully unsupervised approach enables us to reach the accuracy of state-of-the-art supervised methodology for the use case of annotating cell nuclei in 3D microscopy images of the worm C. elegans. To this end, our approach yields the first unsupervised atlas of C. elegans, i.e. a model of the joint distribution of all of its cell nuclei, without the need for any ground truth cell annotation. This advancement enables highly efficient annotation of cell nuclei in large microscopy datasets of C. elegans. Beyond C. elegans, our approach offers fully unsupervised construction of cell-level atlases for any model organism with a stereotyped cell lineage, and thus bears the potential to catalyze respective comparative developmental studies in a range of further species
Fusion moves for graph matching
We contribute to approximate algorithms for the quadratic assignment problem also known as graph matching. Inspired by the success of the fusion moves technique developed for multilabel discrete Markov random fields, we investigate its applicability to graph matching. In particular, we show how fusion moves can be efficiently combined with the dedicated state-of-the-art dual methods that have recently shown superior results in computer vision and bioimaging applications. As our empirical evaluation on a wide variety of graph matching datasets suggests, fusion moves significantly improve performance of these methods in terms of speed and quality of the obtained solutions. Our method sets a new state-of-the-art with a notable margin with respect to its competitors
