3,738 research outputs found
Three-dimensional nonlinear stability analysis of the sun-perturbed Earth-Moon equilateral points
Nonlinear analytic study of long period features of particle motion in Earth-Moon syste
Solar Neutrinos: Status and Prospects
We describe the current status of solar neutrino measurements and of the
theory -- both neutrino physics and solar astrophysics -- employed in
interpreting measurements. Important recent developments include
Super-Kamiokande's determination of the neutrino-electron elastic scattering
rate for 8B neutrinos to 3%; the latest SNO global analysis in which the
inclusion of low-energy data from SNO I and II significantly narrowed the range
of allowed values for the neutrino mixing angle theta12; Borexino results for
both the 7Be and pep neutrino fluxes, the first direct measurements
constraining the rate of ppI and ppII burning in the Sun; global reanalyses of
solar neutrino data that take into account new reactor results on theta13; a
new decadal evaluation of the nuclear physics of the pp chain and CNO cycle
defining best values and uncertainties in the nuclear microphysics input to
solar models; recognition of an emerging discrepancy between two tests of solar
metallicity, helioseismological mappings of the sound speed in the solar
interior, and analyses of the metal photoabsorption lines based on our best
current description of the Sun's photosphere; a new round of standard solar
model calculations optimized to agree either with helioseismology or with the
new photospheric analysis; and, motivated by the solar abundance problem, the
development of nonstandard, accreting solar models, in order to investigate
possible consequences of the metal segregation that occurred in the proto-solar
disk. We review this progress and describe how new experiments such as SNO+
could help us further exploit neutrinos as a unique probe of stellar interiors.Comment: 82 pages, 11 figure
Quantum spin glass and the dipolar interaction
Systems in which the dipolar energy dominates the magnetic interaction, and
the crystal field generates strong anisotropy favoring the longitudinal
interaction terms, are considered. Such systems in external magnetic field are
expected to be a good experimental realization of the transverse field Ising
model. With random interactions this model yields a spin glass to paramagnet
phase transition as function of the transverse field. Here we show that the
off-diagonal dipolar interaction, although effectively reduced, destroys the
spin glass order at any finite transverse field. Moreover, the resulting
correlation length is shown to be small near the crossover to the paramagnetic
phase, in agreement with the behavior of the nonlinear susceptibility in the
experiments on \LHx. Thus, we argue that the in these experiments a
cross-over to the paramagnetic phase, and not quantum criticality, was
observed.Comment: To appear in Phys. Rev. Let
Low energy scattering with a nontrivial pion
An earlier calculation in a generalized linear sigma model showed that the
well-known current algebra formula for low energy pion pion scattering held
even though the massless Nambu Goldstone pion contained a small admixture of a
two-quark two-antiquark field. Here we turn on the pion mass and note that the
current algebra formula no longer holds exactly. We discuss this small
deviation and also study the effects of an SU(3) symmetric quark mass type term
on the masses and mixings of the eight SU(3) multiplets in the model. We
calculate the s wave scattering lengths, including the beyond current algebra
theorem corrections due to the scalar mesons, and observe that the model can
fit the data well. In the process, we uncover the way in which linear sigma
models give controlled corrections (due to the presence of scalar mesons) to
the current algebra scattering formula. Such a feature is commonly thought to
exist only in the non-linear sigma model approach.Comment: 15 pages, 8 figure
Magnetization of small lead particles
The magnetization of an ensemble of isolated lead grains of sizes ranging
from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner
effect with lowering of the grain size is observed for the smaller grains. This
is a direct observation by magnetization measurement of the occurrence of a
critical particle size for superconductivity, which is consistent with
Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR
A microlensing measurement of dark matter fractions in three lensing galaxies
Direct measurements of dark matter distributions in galaxies are currently
only possible through the use of gravitational lensing observations.
Combinations of lens modelling and stellar velocity dispersion measurements
provide the best constraints on dark matter distributions in individual
galaxies, however they can be quite complex. In this paper, we use observations
and simulations of gravitational microlensing to measure the smooth (dark)
matter mass fraction at the position of lensed images in three lens galaxies:
MG 0414+0534, SDSS J0924+0219 and Q2237+0305. The first two systems consist of
early-type lens galaxies, and both display a flux ratio anomaly in their close
image pair. Anomalies such as these suggest a high smooth matter percentage is
likely, and indeed we prefer ~50 per cent smooth matter in MG 0414+0534, and
~80 per cent in SDSS J0924+0219 at the projected locations of the lensed
images. Q2237+0305 differs somewhat in that its lensed images lie in the
central kiloparsec of the barred spiral lens galaxy, where we expect stars to
dominate the mass distribution. In this system, we find a smooth matter
percentage that is consistent with zero.Comment: 7 pages, 4 figures. Accepted for publication in Ap
Recommended from our members
Integrated safety studies of the urate reabsorption inhibitor lesinurad in treatment of gout.
ObjectiveLesinurad (LESU) is a selective urate reabsorption inhibitor approved at 200 mg daily for use with a xanthine oxidase inhibitor (XOI) to treat hyperuricaemia in gout patients failing to achieve target serum urate on XOI. The aim of the study was to investigate the long-term safety of LESU + XOI therapy.MethodsSafety data were pooled from three 12-month phase III (core) trials evaluating LESU 200 and 400 mg/day combined with an XOI (LESU200+XOI and LESU400+XOI), and two 12-month extension studies using descriptive statistics. To adjust for treatment duration, treatment-emergent adverse events (TEAEs) were expressed as exposure-adjusted incidence rates (patients with events per 100 person-years).ResultsIn the core studies, exposure-adjusted incidence rates for total and total renal-related TEAEs were comparable for XOI alone and LESU200+XOI but higher with LESU400+XOI. Exposure-adjusted incidence rates for serum creatinine (sCr) elevations ⩾1.5×baseline were 2.9, 7.3 and 18.7, respectively. Resolution (sCr ⩽1.2×baseline) occurred in 75-90% of all events, with 66-75% occurring without any study medication interruption. Major adverse cardiovascular events were 3, 4 and 9 with XOI, LESU200+XOI and LESU400+XOI, respectively. Longer exposure in core+extension studies did not increase rates for any safety signals.ConclusionAt the approved dose of 200 mg once-daily combined with an XOI, LESU did not increase renal, cardiovascular or other adverse events compared with XOI alone, except for sCr elevations. With extended exposure in the core+extension studies, the safety profile was consistent with that observed in the core studies, and no new safety concerns were identified
Role of Light Vector Mesons in the Heavy Particle Chiral Lagrangian
We give the general framework for adding "light" vector particles to the
heavy hadron effective chiral Lagrangian. This has strong motivations both from
the phenomenological and aesthetic standpoints. An application to the already
observed D \rightarrow \overbar{K^*} weak transition amplitude is discussed.Comment: 19 pages, LaTeX documen
The many levels pairing Hamiltonian for two pairs
We address the problem of two pairs of fermions living on an arbitrary number
of single particle levels of a potential well (mean field) and interacting
through a pairing force. The associated solutions of the Richardson's equations
are classified in terms of a number , which reduces to the seniority
in the limit of large values of the pairing strength and yields the number
of pairs not developing a collective behaviour, their energy remaining finite
in the limit. We express analytically, through the moments of the
single particle levels distribution, the collective mode energy and the two
critical values and of the coupling which can
exist on a single particle level with no pair degeneracy. Notably and merge when the number of single particle levels
goes to infinity, where they coincide with the (when it exists) of
a one pair system, not envisioned by the Richardson theory. In correspondence
of the system undergoes a transition from a mean field to a
pairing dominated regime. We finally explore the behaviour of the excitation
energies, wave functions and pair transfer amplitudes finding out that the
former, for , come close to the BCS predictions, whereas the
latter display a divergence at , signaling the onset of a long
range off-diagonal order in the system.Comment: 35 pages, 6 figures, 2 tables, to be published in EPJ
Neutrinoless Double Beta Decay and CP Violation
We study the relation between the Majorana neutrino mass matrices and the
neutrinoless double beta decay when CP is not conserved. We give an explicit
form of the decay rate in terms of a rephasing invariant quantity and
demonstrate that in the presence of CP violation it is impossible to have
vanishing neutrinoless double beta decay in the case of two neutrino
generations (or when the third generation leptons do not mix with other leptons
and hence decouple).Comment: 9 pages, UTPT-93-1
- …
