985 research outputs found

    Asymmetric Gepner Models II. Heterotic Weight Lifting

    Get PDF
    A systematic study of "lifted" Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E8E_8 factor by a modular isomorphic N=0N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.Comment: 46 pages, 17 figure

    Classification of Simple Current Invariants

    Full text link
    We summarize recent work on the classification of modular invariant partition functions that can be obtained with simple currents in theories with a center (Z_p)^k with p prime. New empirical results for other centers are also presented. Our observation that the total number of invariants is monodromy-independent for (Z_p)^k appears to be true in general as well. (Talk presented in the parallel session on string theory of the Lepton-Photon/EPS Conference, Geneva, 1991.)Comment: 8 page

    Constraints on extra dimensions from precision molecular spectroscopy

    Get PDF
    Accurate investigations of quantum level energies in molecular systems are shown to provide a test ground to constrain the size of compactified extra dimensions. This is made possible by the recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen (H2_2, HD and D2_2) and the molecular hydrogen ions (H2+_2^+, HD+^+ and D2+_2^+). Comparisons between experiment and quantum electrodynamics calculations for these molecular systems can be interpreted in terms of probing large extra dimensions, under which conditions gravity will become much stronger. Molecules are a probe of space-time geometry at typical distances where chemical bonds are effective, i.e. at length scales of an \AA. Constraints on compactification radii for extra dimensions are derived within the Arkani-Hamed-Dimopoulos-Dvali framework, while constraints for curvature or brane separation are derived within the Randall-Sundrum framework. Based on the molecular spectroscopy of D2_2 molecules and HD+^+ ions, the compactification size for seven extra dimensions (in connection to M-theory defined in 11 dimensions) of equal size is shown to be limited to R7<0.6μR_7 < 0.6 \mum. While limits on compactification sizes of extra dimensions based on other branches of physics are compared, the prospect of further tightening constraints from the molecular method is discussed

    Heterotic Weight Lifting

    Get PDF
    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E_8 factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3) x SU(2) x U(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10.000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.Comment: 19 pages, 1 figur

    Significance of interface anisotropy in laser induced magnetization precession in ferromagnetic metal films

    Full text link
    Laser induced ultrafast demagnetization in ferromagnetic metals was discovered almost 20 years ago, but currently there is still lack of consensus on the microscopic mechanism responsible for the corresponding transfer of angular momentum and energy between electron, lattice and spin subsystems. A distinct, but intrinsically correlated phenomenon occurring on a longer timescale is the magnetization precession after the ultrafast demagnetization process, if a magnetic field is applied to tilt the magnetization vector away from its easy direction, which can be attributed to the change of anisotropy after laser heating. In an in-plane magnetized Pt/Co/Pt thin film with perpendicular interface anisotropy, we found excellent agreement between theoretical prediction with plausible parameters and experimental data measured using time resolved magneto-optical Kerr effect. This agreement confirms that the time evolution of the anisotropy field, which is driven by the interaction between electrons and phonons, determines the magnetization precession completely. A detailed analysis shows that, even though the whole sample is magnetized in-plane, the dynamic interface anisotropy field dictates the initial phase of the magnetization precession, highlighting the significance of the interface anisotropy field in laser induced magnetization precession.Comment: 11 pages, 2 figure

    From CFT's to Graphs

    Full text link
    In this paper, we pursue the discussion of the connections between rational conformal field theories (CFT) and graphs. We generalize our recent work on the relations of operator product algebra (OPA) structure constants of sl(2)sl(2)\, theories with the Pasquier algebra attached to the graph. We show that in a variety of CFT built on sl(n)sl(n)\, -- typically conformal embeddings and orbifolds, similar considerations enable one to write a linear system satisfied by the matrix elements of the Pasquier algebra in terms of conformal data -- quantum dimensions and fusion coefficients. In some cases, this provides a sufficient information for the determination of all the eigenvectors of an adjacency matrix, and hence of a graph.Comment: 44 pages, 6 postscript figures, the whole uuencoded. TEX file, macros used : harvmac.tex , epsf.tex. Optionally, AMS fonts in amssym.def and amssym.te

    Group theory factors for Feynman diagrams

    Get PDF
    We present algorithms for the group independent reduction of group theory factors of Feynman diagrams. We also give formulas and values for a large number of group invariants in which the group theory factors are expressed. This includes formulas for various contractions of symmetric invariant tensors, formulas and algorithms for the computation of characters and generalized Dynkin indices and trace identities. Tables of all Dynkin indices for all exceptional algebras are presented, as well as all trace identities to order equal to the dual Coxeter number. Further results are available through efficient computer algorithms (see http://norma.nikhef.nl/~t58/ and http://norma.nikhef.nl/~t68/ ).Comment: Latex (using axodraw.sty), 47 page

    A Minimal Superstring Standard Model I: Flat Directions

    Get PDF
    Three family SU(3)_C x SU(2)_L x U(1)_Y string models in several constructions generically possess two features: (i) an extra local anomalous U(1)_A and (ii) numerous (often fractionally charged) exotic particles beyond those in the minimal supersymmetric model (MSSM). Recently, we demonstrated that the observable sector effective field theory of such a free fermionic string model can reduce to that of the MSSM, with the standard observable gauge group being just SU(3)_C x SU(2)_L x U(1)_Y and the SU(3)_C x SU(2)_L x U(1)_Y-charged spectrum of the observable sector consisting solely of the MSSM spectrum. An example of a model with this property was shown. We continue our investigation of this model by presenting a large set of different flat directions of the same model that all produce the MSSM spectrum. Our results suggest that even after imposing the conditions for the decoupling of exotic states, there may remain sufficient freedom to satisfy the remaining phenomenological constraints imposed by the observed data.Comment: 64 pages. Latex. Revisions to match version in Int. J. Mod. Physics

    Systematic approach to cyclic orbifolds

    Get PDF
    We introduce an orbifold induction procedure which provides a systematic construction of cyclic orbifolds, including their twisted sectors. The procedure gives counterparts in the orbifold theory of all the current-algebraic constructions of conformal field theory and enables us to find the orbifold characters and their modular transformation properties.Comment: 39 pages, LaTeX. v2,3: references added. v4: typos correcte
    corecore