294 research outputs found
Color-dependent conductance of graphene with adatoms
We study ballistic transport properties of graphene with a low concentration
of vacancies or adatoms. The conductance of graphene doped to the Dirac point
is found to depend on the relative distribution of impurities among different
sites of the honeycomb lattice labeled in general by six colors. The
conductivity is shown to be sensitive to the crystal orientation if adatom
sites have a preferred color. Our theory is confirmed by numerical simulations
using recursive Green's functions with no adjustable parameters.Comment: 4 pages, 4 figure
Learnings from a Retail Recommendation System on Billions of Interactions at bol.com
Recommender systems are ubiquitous in the modern internet, where they help users find items they might like. We discuss the design of a large-scale recommender system handling billions of interactions on a European e-commerce platform.We present two studies on enhancing the predictive performance of this system with both algorithmic and systems-related approaches. First, we evaluate neural network-based approaches on proprietary data from our e-commerce platform, and confirm recent results outlining that the benefits of these methods with respect to predictive performance are limited, while they exhibit severe scalability bottlenecks. Next, we investigate the impact of a reduction of the response latency of our serving system, and conduct an A/B test on the live platform with more than 19 million user sessions, which confirms that the latency reduction of the recommender system correlates with a significant increase in business-relevant metrics. We discuss the implications of our findings with respect to real world recommendation systems and future research on scalable session-based recommendation
Geometric Approach to Quantum Statistical Mechanics and Application to Casimir Energy and Friction Properties
A geometric approach to general quantum statistical systems (including the
harmonic oscillator) is presented. It is applied to Casimir energy and the
dissipative system with friction. We regard the (N+1)-dimensional Euclidean
{\it coordinate} system (X,) as the quantum statistical system of N
quantum (statistical) variables (X) and one {\it Euclidean time} variable
(). Introducing paths (lines or hypersurfaces) in this space
(X,), we adopt the path-integral method to quantize the mechanical
system. This is a new view of (statistical) quantization of the {\it
mechanical} system. The system Hamiltonian appears as the {\it area}. We show
quantization is realized by the {\it minimal area principle} in the present
geometric approach. When we take a {\it line} as the path, the path-integral
expressions of the free energy are shown to be the ordinary ones (such as N
harmonic oscillators) or their simple variation. When we take a {\it
hyper-surface} as the path, the system Hamiltonian is given by the {\it area}
of the {\it hyper-surface} which is defined as a {\it closed-string
configuration} in the bulk space. In this case, the system becomes a O(N)
non-linear model. We show the recently-proposed 5 dimensional Casimir energy
(ArXiv:0801.3064,0812.1263) is valid. We apply this approach to the
visco-elastic system, and present a new method using the path-integral for the
calculation of the dissipative properties.Comment: 20 pages, 8 figures, Proceedings of ICFS2010 (2010.9.13-18,
Ise-Shima, Mie, Japan
Moment inversion problem for piecewise D-finite functions
We consider the problem of exact reconstruction of univariate functions with
jump discontinuities at unknown positions from their moments. These functions
are assumed to satisfy an a priori unknown linear homogeneous differential
equation with polynomial coefficients on each continuity interval. Therefore,
they may be specified by a finite amount of information. This reconstruction
problem has practical importance in Signal Processing and other applications.
It is somewhat of a ``folklore'' that the sequence of the moments of such
``piecewise D-finite''functions satisfies a linear recurrence relation of
bounded order and degree. We derive this recurrence relation explicitly. It
turns out that the coefficients of the differential operator which annihilates
every piece of the function, as well as the locations of the discontinuities,
appear in this recurrence in a precisely controlled manner. This leads to the
formulation of a generic algorithm for reconstructing a piecewise D-finite
function from its moments. We investigate the conditions for solvability of the
resulting linear systems in the general case, as well as analyze a few
particular examples. We provide results of numerical simulations for several
types of signals, which test the sensitivity of the proposed algorithm to
noise
Fairness-Aware Instrumentation of Preprocessing Pipelines for Machine Learning
Surfacing and mitigating bias in ML pipelines is a complex topic, with a dire need to provide system-level support to data scientists. Humans should be empowered to debug these pipelines, in order to control for bias and to improve data quality and representativeness. We propose fair-DAGs, an open-source library that extracts directed acyclic graph (DAG) representations of the data flow in preprocessing pipelines for ML. The library subsequently instruments the pipelines with tracing and visualization code to capture changes in data distributions and identify distortions with respect to protected group membership as the data travels through the pipeline. We illustrate the utility of fair-DAGs with experiments on publicly available ML pipelines
Statistical validation of event predictors: A comparative study based on the field of seizure prediction
Functionally dissociating ventro-dorsal components within the rostro-caudal hierarchical organization of the human prefrontal cortex
This work was supported by a grant of the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086).Peer reviewedPostprin
Oral Tau Aggregation Inhibitor for Alzheimer’s Disease : Design, Progress and Basis for Selection of the 16 mg/day Dose in a Phase 3, Randomized, Placebo-Controlled Trial of Hydromethylthionine Mesylate
Funding Information: We gratefully acknowledge the contribution of the scientific advisory board, study investigators, and the generosity of study participants. The authors thank EVERSANA™ for providing medical writing support, which was funded by TauRx Therapeutics in accordance with Good Publication Practice (GPP3) guidelines ( http://www.ismpp.org/gpp3 ). Publisher Copyright: © 2022, The Author(s).Peer reviewedPublisher PD
- …
