1,030 research outputs found

    Improving the Reliability of Decision-Support Systems for Nuclear Emergency Management by Leveraging Software Design Diversity

    Get PDF
    This paper introduces a novel method of continuous verification of simulation software used in decision-support systems for nuclear emergency management (DSNE). The proposed approach builds on methods from the field of software reliability engineering, such as N-Version Programming, Recovery Blocks, and Consensus Recovery Blocks. We introduce a new acceptance test for dispersion simulation results and a new voting scheme based on taxonomies of simulation results rather than individual simulation results. The acceptance test and the voter are used in a new scheme, which extends the Consensus Recovery Block method by a database of result taxonomies to support machine-learning. This enables the system to learn how to distinguish correct from incorrect results, with respect to the implemented numerical schemes. Considering that decision-support systems for nuclear emergency management are used in a safety-critical application context, the methods introduced in this paper help improve the reliability of the system and the trustworthiness of the simulation results used by emergency managers in the decision making process. The effectiveness of the approach has been assessed using the atmospheric dispersion forecasts of two test versions of the widely used RODOS DSNE system

    Energy Efficient and Reliable ARQ Scheme (ER-ACK) for Mission Critical M2M/IoT Services

    Get PDF
    Wireless sensor networks (WSNs) are the main infrastructure for machine to machine (M2M) and Internet of thing (IoT). Since various sophisticated M2M/IoT services have their own quality-of-service (QoS) requirements, reliable data transmission in WSNs is becoming more important. However, WSNs have strict constraints on resources due to the crowded wireless frequency, which results in high collision probability. Therefore a more efficient data delivering scheme that minimizes both the transmission delay and energy consumption is required. This paper proposes energy efficient and reliable data transmission ARQ scheme, called energy efficient and reliable ACK (ER-ACK), to minimize transmission delay and energy consumption at the same time. The proposed scheme has three aspects of advantages compared to the legacy ARQ schemes such as ACK, NACK and implicit-ACK (I-ACK). It consumes smaller energy than ACK, has smaller transmission delay than NACK, and prevents the duplicated retransmission problem of I-ACK. In addition, resource considered reliability (RCR) is suggested to quantify the improvement of the proposed scheme, and mathematical analysis of the transmission delay and energy consumption are also presented. The simulation results show that the ER-ACK scheme achieves high RCR by significantly reducing transmission delay and energy consumption

    HyPaFilter - A versatile hybrid FPGA packet filter

    Get PDF
    With network traffic rates continuously growing, security systems like firewalls are facing increasing challenges to process incoming packets at line speed without sacrificing protection. Accordingly, specialized hardware firewalls are increasingly used in high-speed environments. Hardware solutions, though, are inherently limited in terms of the complexity of the policies they can implement, often forcing users to choose between throughput and comprehensive analysis. On the contrary, complex rules typically constitute only a small fraction of the rule set. This motivates the combination of massively parallel, yet complexity-limited specialized circuitry with a slower, but semantically powerful software firewall. The key challenge in such a design arises from the dependencies between classification rules due to their relative priorities within the rule set: complex rules requiring software-based processing may be interleaved at arbitrary positions between those where hardware processing is feasible. We therefore discuss approaches for partitioning and transforming rule sets for hybrid packet processing, and propose HyPaFilter, a hybrid classification system based on tailored circuitry on an FPGA as an accelerator for a Linux netfilter firewall. Our evaluation demonstrates 30-fold performance gains in comparison to software-only processing.Horizon 2020 (Grant ID: SSICLOPS project, 644866)This is the author accepted manuscript. The final version is available from the Association for Computing Machinery via http://dx.doi.org/10.1145/2881025.288103

    Sonho, desafio e tecnologia: 35 anos de contribuições da Embrapa Suínos e Aves.

    Get PDF
    bitstream/item/105259/1/publicacao-1z33f2s.pdfProjeto: 11.11.11.111

    Switching between dynamic states in intermediate-length Josephson junctions

    Get PDF
    The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained

    Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment

    Get PDF
    Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.Damon Runyon Cancer Research Foundation (DRG 2032-09)Damon Runyon Cancer Research Foundation (DFS 04-12)European Molecular Biology Organization (Long-term Fellowship)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098179)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098188)Smith Family FoundationPew Charitable Trusts. Program in the Biomedical Science

    A computational framework to emulate the human perspective in flow cytometric data analysis

    Get PDF
    Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation. <p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods. <p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics

    Resonant flux motion and I-V -characteristics in frustrated Josephson junctions

    Full text link
    We describe the dynamics of fluxons moving in a frustrated Josephson junction with p, d, and f-wave symmetry and calculate the I-V characteristics. The behavior of fluxons is quite distinct in the long and short length junction limit. For long junctions the intrinsic flux is bound at the center and the moving integer fluxon or antifluxon interacts with it only when it approaches the junction's center. For small junctions the intrinsic flux can move as a bunched type fluxon introducing additional steps in the I-V characteristics. Possible realization in quantum computation is presented.Comment: 21 pages, 8 figure

    Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data

    Get PDF
    Objective To examine risk of malignancy and death in patients with kidney transplant who receive the immunosuppressive drug sirolimus.Design Systematic review and meta-analysis of individual patient data.Data sources Medline, Embase, and the Cochrane Central Register of Controlled Trials from inception to March 2013.Eligibility Randomized controlled trials comparing immunosuppressive regimens with and without sirolimus in recipients of kidney or combined pancreatic and renal transplant for which the author was willing to provide individual patient level data. Two reviewers independently screened titles/abstracts and full text reports of potentially eligible trials to identify studies for inclusion. All eligible trials reported data on malignancy or survival.Results the search yielded 2365 unique citations. Patient level data were available from 5876 patients from 21 randomized trials. Sirolimus was associated with a 40% reduction in the risk of malignancy (adjusted hazard ratio 0.60, 95% confidence interval 0.39 to 0.93) and a 56% reduction in the risk of non-melanoma skin cancer (0.44, 0.30 to 0.63) compared with controls. the most pronounced effect was seen in patients who converted to sirolimus from an established immunosuppressive regimen, resulting in a reduction in risk of malignancy (0.34, 0.28 to 0.41), non-melanoma skin cancer (0.32, 0.24 to 0.42), and other cancers (0.52, 0.38 to 0.69). Sirolimus was associated with an increased risk of death (1.43, 1.21 to 1.71) compared with controls.Conclusions Sirolimus was associated with a reduction in the risk of malignancy and non-melanoma skin cancer in transplant recipients. the benefit was most pronounced in patients who converted from an established immunosuppressive regimen to sirolimus. Given the risk of mortality, however, the use of this drug does not seem warranted for most patients with kidney transplant. Further research is needed to determine if different populations, such as those at high risk of cancer, might benefit from sirolimus.PfizerOttawa Hosp, Res Inst, Ottawa, ON K1H 7W9, CanadaUniv Ottawa, Ottawa, ON, CanadaCairo Univ, Cairo Kidney Ctr, Cairo, EgyptLimites Med Res, Vacallo, SwitzerlandUniv Manitoba, Dept Pediat & Childs Hlth, Winnipeg, MB, CanadaLund Univ, Dept Nephrol & Transplantat, Malmo, SwedenUniversidade Federal de São Paulo, Hosp Rim & Hipertensao, São Paulo, BrazilAddenbrookes Hosp, Dept Renal Med, Cambridge, EnglandNorthwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USAMaastricht Univ, Med Ctr, Maastricht, NetherlandsSt Louis Hosp, Dept Nephrol, Paris, FranceHosp JW Goethe, Div Nephrol, Frankfurt, GermanyUniv Munich, Dept Surg, Munich, GermanyGoethe Univ Frankfurt, JW Goethe Clin, Clin Dermatol Venerol & Allergol, Frankfurt, GermanyInst Klin Expt Med, Dept Nephrol, Prague, Czech RepublicUniv Cambridge, Addenbrookes Hosp, Dept Surg, NIHR Cambridge Biomed Res Ctr, Cambridge CB2 2QQ, EnglandUniversidade Federal de São Paulo, Hosp Rim & Hipertensao, São Paulo, BrazilWeb of Scienc
    corecore