1,147 research outputs found

    From modular invariants to graphs: the modular splitting method

    Full text link
    We start with a given modular invariant M of a two dimensional su(n)_k conformal field theory (CFT) and present a general method for solving the Ocneanu modular splitting equation and then determine, in a step-by-step explicit construction, 1) the generalized partition functions corresponding to the introduction of boundary conditions and defect lines; 2) the quantum symmetries of the higher ADE graph G associated to the initial modular invariant M. Notice that one does not suppose here that the graph G is already known, since it appears as a by-product of the calculations. We analyze several su(3)_k exceptional cases at levels 5 and 9.Comment: 28 pages, 7 figures. Version 2: updated references. Typos corrected. su(2) example has been removed to shorten the paper. Dual annular matrices for the rejected exceptional su(3) diagram are determine

    Orders and dimensions for sl(2) or sl(3) module categories and Boundary Conformal Field Theories on a torus

    Full text link
    After giving a short description, in terms of action of categories, of some of the structures associated with sl(2) and sl(3) boundary conformal field theories on a torus, we provide tables of dimensions describing the semisimple and co-semisimple blocks of the corresponding weak bialgebras (quantum groupoids), tables of quantum dimensions and orders, and tables describing induction - restriction. For reasons of size, the sl(3) tables of induction are only given for theories with self-fusion (existence of a monoidal structure).Comment: 25 pages, 5 tables, 9 figures. Version 2: updated references. Typos corrected. Several proofs added. Examples of ADE and generalized ADE trigonometric identities have been removed to shorten the pape

    From conformal embeddings to quantum symmetries: an exceptional SU(4) example

    Full text link
    We briefly discuss several algebraic tools that are used to describe the quantum symmetries of Boundary Conformal Field Theories on a torus. The starting point is a fusion category, together with an action on another category described by a quantum graph. For known examples, the corresponding modular invariant partition function, which is sometimes associated with a conformal embedding, provides enough information to recover the whole structure. We illustrate these notions with the example of the conformal embedding of SU(4) at level 4 into Spin(15) at level 1, leading to the exceptional quantum graph E4(SU(4)).Comment: 22 pages, 3 color figures. Version 2: We changed the color of figures (ps files) in such a way that they are still understood when converted to gray levels. Version 3: Several references have been adde

    Data-Oblivious Graph Algorithms in Outsourced External Memory

    Full text link
    Motivated by privacy preservation for outsourced data, data-oblivious external memory is a computational framework where a client performs computations on data stored at a semi-trusted server in a way that does not reveal her data to the server. This approach facilitates collaboration and reliability over traditional frameworks, and it provides privacy protection, even though the server has full access to the data and he can monitor how it is accessed by the client. The challenge is that even if data is encrypted, the server can learn information based on the client data access pattern; hence, access patterns must also be obfuscated. We investigate privacy-preserving algorithms for outsourced external memory that are based on the use of data-oblivious algorithms, that is, algorithms where each possible sequence of data accesses is independent of the data values. We give new efficient data-oblivious algorithms in the outsourced external memory model for a number of fundamental graph problems. Our results include new data-oblivious external-memory methods for constructing minimum spanning trees, performing various traversals on rooted trees, answering least common ancestor queries on trees, computing biconnected components, and forming open ear decompositions. None of our algorithms make use of constant-time random oracles.Comment: 20 page

    Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity

    Full text link
    Linear viscoelastic properties for a dilute polymer solution are predicted by modeling the solution as a suspension of non-interacting bead-spring chains. The present model, unlike the Rouse model, can describe the solution's rheological behavior even when the solvent quality is good, since excluded volume effects are explicitly taken into account through a narrow Gaussian repulsive potential between pairs of beads in a bead-spring chain. The use of the narrow Gaussian potential, which tends to the more commonly used delta-function repulsive potential in the limit of a width parameter "d" going to zero, enables the performance of Brownian dynamics simulations. The simulations results, which describe the exact behavior of the model, indicate that for chains of arbitrary but finite length, a delta-function potential leads to equilibrium and zero shear rate properties which are identical to the predictions of the Rouse model. On the other hand, a non-zero value of "d" gives rise to a prediction of swelling at equilibrium, and an increase in zero shear rate properties relative to their Rouse model values. The use of a delta-function potential appears to be justified in the limit of infinite chain length. The exact simulation results are compared with those obtained with an approximate solution which is based on the assumption that the non-equilibrium configurational distribution function is Gaussian. The Gaussian approximation is shown to be exact to first order in the strength of excluded volume interaction, and is found to be accurate above a threshold value of "d", for given values of chain length and strength of excluded volume interaction.Comment: Revised version. Long chain limit analysis has been deleted. An improved and corrected examination of the long chain limit will appear as a separate posting. 32 pages, 9 postscript figures, LaTe

    A Minimal Periods Algorithm with Applications

    Full text link
    Kosaraju in ``Computation of squares in a string'' briefly described a linear-time algorithm for computing the minimal squares starting at each position in a word. Using the same construction of suffix trees, we generalize his result and describe in detail how to compute in O(k|w|)-time the minimal k-th power, with period of length larger than s, starting at each position in a word w for arbitrary exponent k2k\geq2 and integer s0s\geq0. We provide the complete proof of correctness of the algorithm, which is somehow not completely clear in Kosaraju's original paper. The algorithm can be used as a sub-routine to detect certain types of pseudo-patterns in words, which is our original intention to study the generalization.Comment: 14 page
    corecore