50 research outputs found
The Color-Flavor Transformation and Lattice QCD
We present the color-flavor transformation for gauge group SU(N_c) and
discuss its application to lattice QCD.Comment: 6 pages, Lattice2002(theoretical), typo in Ref.[1] correcte
Quantum Spin Formulation of the Principal Chiral Model
We formulate the two-dimensional principal chiral model as a quantum spin
model, replacing the classical fields by quantum operators acting in a Hilbert
space, and introducing an additional, Euclidean time dimension. Using coherent
state path integral techniques, we show that in the limit in which a large
representation is chosen for the operators, the low energy excitations of the
model describe a principal chiral model in three dimensions. By dimensional
reduction, the two-dimensional principal chiral model of classical fields is
recovered.Comment: 3pages, LATTICE9
Partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order
We calculate the partition function of partially quenched chiral perturbation
theory in the epsilon regime at next-to-leading order using the supersymmetry
method in the formulation without a singlet particle. We include a nonzero
imaginary chemical potential and show that the finite-volume corrections to the
low-energy constants and for the partially quenched partition
function, and hence for spectral correlation functions of the Dirac operator,
are the same as for the unquenched partition function. We briefly comment on
how to minimize these corrections in lattice simulations of QCD. As a side
result, we show that the zero-momentum integral in the formulation without a
singlet particle agrees with previous results from random matrix theory.Comment: 19 pages, 4 figures; minor changes, to appear in JHE
Level Repulsion in Constrained Gaussian Random-Matrix Ensembles
Introducing sets of constraints, we define new classes of random-matrix
ensembles, the constrained Gaussian unitary (CGUE) and the deformed Gaussian
unitary (DGUE) ensembles. The latter interpolate between the GUE and the CGUE.
We derive a sufficient condition for GUE-type level repulsion to persist in the
presence of constraints. For special classes of constraints, we extend this
approach to the orthogonal and to the symplectic ensembles. A generalized
Fourier theorem relates the spectral properties of the constraining ensembles
with those of the constrained ones. We find that in the DGUEs, level repulsion
always prevails at a sufficiently short distance and may be lifted only in the
limit of strictly enforced constraints.Comment: 20 pages, no figures. New section adde
The Color--Flavor Transformation of induced QCD
The Zirnbauer's color-flavor transformation is applied to the
lattice gauge model, in which the gauge theory is induced by a heavy chiral
scalar field sitting on lattice sites. The flavor degrees of freedom can
encompass several `generations' of the auxiliary field, and for each
generation, remaining indices are associated with the elementary plaquettes
touching the lattice site. The effective, color-flavor transformed theory is
expressed in terms of gauge singlet matrix fields carried by lattice links. The
effective action is analyzed for a hypercubic lattice in arbitrary dimension.
We investigate the corresponding d=2 and d=3 dual lattices. The saddle points
equations of the model in the large- limit are discussed.Comment: 24 pages, 6 figures, to appear in Int. J. Mod. Phys.
Rate of convergence of linear functions on the unitary group
We study the rate of convergence to a normal random variable of the real and
imaginary parts of Tr(AU), where U is an N x N random unitary matrix and A is a
deterministic complex matrix. We show that the rate of convergence is O(N^{-2 +
b}), with 0 <= b < 1, depending only on the asymptotic behaviour of the
singular values of A; for example, if the singular values are non-degenerate,
different from zero and O(1) as N -> infinity, then b=0. The proof uses a
Berry-Esse'en inequality for linear combinations of eigenvalues of random
unitary, matrices, and so appropriate for strongly dependent random variables.Comment: 34 pages, 1 figure; corrected typos, added remark 3.3, added 3
reference
Random Matrix Theory for the Hermitian Wilson Dirac Operator and the chGUE-GUE Transition
We introduce a random two-matrix model interpolating between a chiral
Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without
symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE)
and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n
limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit)
this theory is in one to one correspondence to the partition function of Wilson
chiral perturbation theory in the epsilon regime, such as the related two
matrix-model previously introduced in refs. [20,21]. For a generic number of
flavours and rectangular block matrices in the chGUE part we derive an
eigenvalue representation for the partition function displaying a Pfaffian
structure. In the quenched case with nu=0,1 we derive all spectral correlations
functions in our model for finite-n, given in terms of skew-orthogonal
polynomials. The latter are expressed as Gaussian integrals over standard
Laguerre polynomials. In the weakly non-chiral microscopic limit this yields
all corresponding quenched eigenvalue correlation functions of the Hermitian
Wilson operator.Comment: 27 pages, 4 figures; v2 typos corrected, published versio
Lattice gauge theory with baryons at strong coupling
We study the effective Hamiltonian for strong-coupling lattice QCD in the
case of non-zero baryon density. In leading order the effective Hamiltonian is
a generalized antiferromagnet. For naive fermions, the symmetry is U(4N_f) and
the spins belong to a representation that depends on the local baryon number.
Next-nearest-neighbor (nnn) terms in the Hamiltonian break the symmetry to
U(N_f) x U(N_f). We transform the quantum problem to a Euclidean sigma model
which we analyze in a 1/N_c expansion. In the vacuum sector we recover
spontaneous breaking of chiral symmetry for the nearest-neighbor and nnn
theories. For non-zero baryon density we study the nearest-neighbor theory
only, and show that the pattern of spontaneous symmetry breaking depends on the
baryon density.Comment: 31 pages, 5 EPS figures. Corrected Eq. (6.1
