132 research outputs found

    The First Cellular Models Based on Frataxin Missense Mutations That Reproduce Spontaneously the Defects Associated with Friedreich Ataxia

    Get PDF
    BACKGROUND:Friedreich ataxia (FRDA), the most common form of recessive ataxia, is due to reduced levels of frataxin, a highly conserved mitochondrial iron-chaperone involved in iron-sulfur cluster (ISC) biogenesis. Most patients are homozygous for a (GAA)(n) expansion within the first intron of the frataxin gene. A few patients, either with typical or atypical clinical presentation, are compound heterozygous for the GAA expansion and a micromutation. METHODOLOGY:We have developed a new strategy to generate murine cellular models for FRDA: cell lines carrying a frataxin conditional allele were used in combination with an EGFP-Cre recombinase to create murine cellular models depleted for endogenous frataxin and expressing missense-mutated human frataxin. We showed that complete absence of murine frataxin in fibroblasts inhibits cell division and leads to cell death. This lethal phenotype was rescued through transgenic expression of human wild type as well as mutant (hFXN(G130V) and hFXN(I154F)) frataxin. Interestingly, cells expressing the mutated frataxin presented a FRDA-like biochemical phenotype. Though both mutations affected mitochondrial ISC enzymes activities and mitochondria ultrastructure, the hFXN(I154F) mutant presented a more severe phenotype with affected cytosolic and nuclear ISC enzyme activities, mitochondrial iron accumulation and an increased sensitivity to oxidative stress. The differential phenotype correlates with disease severity observed in FRDA patients. CONCLUSIONS:These new cellular models, which are the first to spontaneously reproduce all the biochemical phenotypes associated with FRDA, are important tools to gain new insights into the in vivo consequences of pathological missense mutations as well as for large-scale pharmacological screening aimed at compensating frataxin deficiency

    Full-length transcriptome sequencing from multiple tissues of duck, Anas platyrhynchos

    Get PDF
    Duck (Anas platyrhynchos), one of the most economically important waterfowl, is an ideal model for studying the immune protection mechanism of birds. An incomplete duck reference genome and very limited availability of full-length cDNAs has hindered the identification of alternatively spliced transcripts and slowed down many basic studies in ducks. We applied PacBio Iso-Seq technologies to multiple tissues from duck for use in transcriptome sequencing. We obtained 199,993 full-length transcripts and comprehensively annotated these transcripts. 23,755 lncRNAs were predicted from all identified transcripts and 35,031 alternative splicing events, which divided into 5 models, were accurately predicted from 3,346 genes. Our data constitute a large increase in the known number of both lncRNA, and alternatively spliced transcripts of duck and plays an important role in improving current genome annotation. In addition, the data will be extremely useful for functional studies in other birds

    Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sessile bivalves of the genus <it>Mytilus </it>are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of <it>M. galloprovincialis</it>, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes.</p> <p>Results</p> <p>We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in <it>M. galloprovincialis</it>. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with <it>Vibrio splendidus </it>at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the <it>Vibrio</it>-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways.</p> <p>Conclusions</p> <p>The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on <it>Vibrio</it>-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the <it>Mytilus </it>species to an evolving microbial world.</p

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Measurement of the B0^0 and B+^+ meson lifetimes with fully reconstructed hadronic final states

    Get PDF
    The B0 and B+ meson lifetimes have been measured in e+e- annihilation data collected in 1999 and 2000 with the BABAR detector at center-of-mass energies near the Upsilon(4S) resonance. Events are selected in which one B meson is fully reconstructed in a hadronic final state while the second B meson is reconstructed inclusively. A combined fit to the B0 and the B+ decay time difference distributions yields tau_{B0} = 1.546 +/- 0.032 (stat) +/- 0.022(syst) ps, tau_{B+} = 1.673 +/- 0.032 (stat) +/- 0.023 (syst) ps and tau_{B+} / tau_{B0} = 1.082 +/- 0.026 (stat) +/- 0.012 (syst

    Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

    Get PDF
    Abstract Background Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Results Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Conclusion Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops
    corecore