1,261 research outputs found

    The ping-pong protocol can be attacked without eavesdropping

    Full text link
    Attack the ping-pong protocol without eavesdropping.Comment: PACS: 03.67.H

    Chosen-Plaintext Cryptanalysis of a Clipped-Neural-Network-Based Chaotic Cipher

    Get PDF
    In ISNN'04, a novel symmetric cipher was proposed, by combining a chaotic signal and a clipped neural network (CNN) for encryption. The present paper analyzes the security of this chaotic cipher against chosen-plaintext attacks, and points out that this cipher can be broken by a chosen-plaintext attack. Experimental analyses are given to support the feasibility of the proposed attack.Comment: LNCS style, 7 pages, 1 figure (6 sub-figures

    Multiparty Quantum Secret Sharing

    Full text link
    Based on a quantum secure direct communication (QSDC) protocol [Phys. Rev. A69(04)052319], we propose a (n,n)(n,n)-threshold scheme of multiparty quantum secret sharing of classical messages (QSSCM) using only single photons. We take advantage of this multiparty QSSCM scheme to establish a scheme of multiparty secret sharing of quantum information (SSQI), in which only all quantum information receivers collaborate can the original qubit be reconstructed. A general idea is also proposed for constructing multiparty SSQI schemes from any QSSCM scheme

    Multiparty Quantum Secret Sharing Based on Entanglement Swapping

    Full text link
    A multiparty quantum secret sharing (QSS) protocol is proposed by using swapping quantum entanglement of Bell states. The secret messages are imposed on Bell states by local unitary operations. The secret messages are split into several parts and each part is distributed to a party so that no action of a subset of all the parties but their entire cooperation is able to read out the secret messages. In addition, the dense coding is used in this protocol to achieve a high efficiency. The security of the present multiparty QSS against eavesdropping has been analyzed and confirmed even in a noisy quantum channel.Comment: 5 page

    Single Qubit Quantum Secret Sharing

    Full text link
    We present a simple and practical protocol for the solution of a secure multiparty communication task, the secret sharing, and its experimental realization. In this protocol, a secret message is split among several parties in a way that its reconstruction require the collaboration of the participating parties. In the proposed scheme the parties solve the problem by a sequential communication of a single qubit. Moreover we show that our scheme is equivalent to the use of a multiparty entangled GHZ state but easier to realize and better scalable in practical applications.Comment: 5 pages, 2 figures, submitted December 29, 200

    Quantum secret sharing between multi-party and multi-party without entanglement

    Full text link
    We propose a quantum secret sharing protocol between multi-party (mm members in group 1) and multi-party (nn members in group 2) using a sequence of single photons. These single photons are used directly to encode classical information in a quantum secret sharing process. In this protocol, all members in group 1 directly encode their respective keys on the states of single photons via unitary operations, then the last one (the mthm^{th} member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. Thus the secret message shared by all members of group 1 is shared by all members of group 2 in such a way that no subset of each group is efficient to read the secret message, but the entire set (not only group 1 but also group 2) is. We also show that it is unconditionally secure. This protocol is feasible with present-day techniques.Comment: 6 pages, no figur

    On the difficult tradeoff between security and privacy: Challenges for the management of digital identities

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19713-5_39The deployment of security measures can lead in many occasions to an infringement of users’ privacy. Indeed, nowadays we have many examples about surveillance programs or personal data breaches in online service providers. In order to avoid the latter problem, we need to establish security measures that do not involve a violation of privacy rights. In this communication we discuss the main challenges when conciliating information security and users’ privacy.This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE)

    Cryptanalysis of an MPEG-Video Encryption Scheme Based on Secret Huffman Tables

    Get PDF
    This paper studies the security of a recently-proposed MPEG-video encryption scheme based on secret Huffman tables. Our cryptanalysis shows that: 1) the key space of the encryption scheme is not sufficiently large against divide-and-conquer (DAC) attack and known-plaintext attack; 2) it is possible to decrypt a cipher-video with a partially-known key, thus dramatically reducing the complexity of the DAC brute-force attack in some cases; 3) its security against the chosen-plaintext attack is very weak. Some experimental results are included to support the cryptanalytic results with a brief discuss on how to improve this MPEG-video encryption scheme.Comment: 8 pages, 4 figure

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Secure pseudo-random linear binary sequences generators based on arithmetic polynoms

    Full text link
    We present a new approach to constructing of pseudo-random binary sequences (PRS) generators for the purpose of cryptographic data protection, secured from the perpetrator's attacks, caused by generation of masses of hardware errors and faults. The new method is based on use of linear polynomial arithmetic for the realization of systems of boolean characteristic functions of PRS' generators. "Arithmetizatio" of systems of logic formulas has allowed to apply mathematical apparatus of residue systems for multisequencing of the process of PRS generation and organizing control of computing errors, caused by hardware faults. This has guaranteed high security of PRS generator's functioning and, consequently, security of tools for cryptographic data protection based on those PRSs
    corecore