3,111 research outputs found
Recommended from our members
Notations and conventions in molecular spectroscopy: part 1. General spectroscopic notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part I in a series, establishes the notations and conventions used for
general spectroscopic notations and deals with quantum mechanics, quantum numbers
(vibrational states, angular momentum and energy levels), spectroscopic transitions, and
miscellaneous notations (e.g. spectroscopic terms). Further parts will follow, dealing inter
alia with symmetry notation, permutation and permutation-inversion symmetry notation,
vibration-rotation spectroscopy and electronic spectroscopy
Increasing Emotional Intelligence through Training: Current Status and Future Directions
Emotional intelligence consists of adaptive emotional functioning involving inter-related competencies relating to perception, understanding, utilising and managing emotions in the self and others. Researchers in diverse fields have studied emotional intelligence and found the construct to be associated with a variety of intrapersonal and interpersonal factors such as mental health, relationship satisfaction, and work performance. This article reviews research investigating the impact of training in emotional-intelligence skills. The results indicate that it is possible to increase emotional intelligence and that such training has the potential to lead to other positive outcomes. The paper offers suggestions about how future research, from diverse disciplines,can uncover what types of training most effectively increase emotional intelligence and produce related beneficial outcomes
Report of the International Society of Hypertension (ISH) Hypertension Teaching Seminar organized by the ISH Africa Regional Advisory Group: Maputo, Mozambique, 2016
The International Society of Hypertension (ISH), in fulfilment of its mission of promoting hypertension control and prevention and also of advancing knowledge globally, organizes hypertension teaching seminars or ‘summer schools’ worldwide through the ISH Regional Advisory Groups. In Africa, seven of such seminars have been organized. This is a report of the eighth seminar held in Maputo, Mozambique, April, 2016. The seminar was attended by over 65 participants from 11 African countries. The Faculty consisted of 11 international hypertension experts. The eighth African hypertension seminar was a great success as confirmed by a pre- and post-test questionnaire
Recommended from our members
Notations and conventions in molecular spectroscopy: part 2. Symmetry notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part 2 in a series, establishes the notations and conventions used for the
description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly
with the symmetry operators of the molecular point groups (also drawing attention to the
difference between symmetry operators and elements). The conventions and notations of the
molecular point groups are then established, followed by those of the representations of these
groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with
permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy
and electronic spectroscopy
Blackbody-radiation-assisted molecular laser cooling
The translational motion of molecular ions can be effectively cooled
sympathetically to temperatures below 100 mK in ion traps through Coulomb
interactions with laser-cooled atomic ions. The distribution of internal
rovibrational states, however, gets in thermal equilibrium with the typically
much higher temperature of the environment within tens of seconds. We consider
a concept for rotational cooling of such internally hot, but translationally
cold heteronuclear diatomic molecular ions. The scheme relies on a combination
of optical pumping from a few specific rotational levels into a ``dark state''
with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure
Speckle interferometry and radiative transfer modelling of the Wolf-Rayet star WR 118
WR 118 is a highly evolved Wolf-Rayet star of the WC10 subtype surrounded by
a permanent dust shell absorbing and re-emitting in the infrared a considerable
fraction of the stellar luminosity. We present the first diffraction-limited
2.13micron speckle interferometric observations of WR 118 with 73 mas
resolution. The speckle interferograms were obtained with the 6m telescope at
the Special Astrophysical Observatory. The two-dimensional visibility function
of the object does not show any significant deviation from circular symmetry.
The visibility curve declines towards the diffraction cut-off frequency to 0.66
and can be approximated by a linear function. Radiative transfer calculations
have been carried out to model the spectral energy distribution, given in the
range of 0.5-25micron, and our 2.13micron visibility function, assuming
spherical symmetry of the dust shell. Both can be fitted with a model
containing double-sized grains (``small'' and ``large'') with the radii of a =
0.05micron and 0.38micron, and a mass fraction of the large grains greater than
65%. Alternatively, a good match can be obtained with the grain size
distribution function n(a)~a^-3, with a ranging between 0.005micron and
0.6micron. At the inner boundary of the modelled dust shell (angular diameter
(17 +/- 1)mas), the temperature of the smallest grains and the dust shell
density are 1750K +/- 100K and (1 +/- 0.2)x10^-19 g/cm^3, respectively. The
dust formation rate is found to be (1.3 +/- 0.5)x10^-7 Msol/yr assuming Vwind =
1200 km/s.Comment: 6 pages including 4 PostScript figures, also available from
http://www.mpifr-bonn.mpg.de/div/ir-interferometry/publications.html;
accepted for publication in Astronomy & Astrophysic
Digitisation and 3D reconstruction of 30 year old microscopic sections of human embryo, foetus and orbit
A collection of 2200 microscopic sections was recently recovered at
the Netherlands Ophthalmic Research Institute and the Department of Anatomy
and Embryology of the Academic Medical Centre in Amsterdam. The sections
were created thirty years ago and constitute the largest and most detailed study of
human orbital anatomy to date. In order to preserve the collection, it was digitised.
This paper documents a practical approach to the automatic reconstruction of a 3-
D representation of the original objects from the digitised sections. To illustrate
the results of our approach, we show a multi-planar reconstruction and a 3-D
direct volume rendering of a reconstructed foetal head
Ice absorption features in the 5-8 μm region toward embedded protostars
We have obtained 5-8 μm spectra towards 10 embedded protostars using the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO-SWS) with the aim of studying the composition of interstellar ices. The spectra are dominated by absorption bands at 6.0 μm and 6.85 μm. The observed peak positions, widths and relative intensities of these bands vary dramatically along the different lines of sight. On the basis of comparison with laboratory spectra, the bulk of the 6.0 μm absorption band is assigned to amorphous H_2O ice. Additional absorption, in this band, is seen toward 5 sources on the short wavelength wing, near 5.8 μm, and the long wavelength side near 6.2 μm. We attribute the short wavelength absorption to a combination of formic acid (HCOOH) and formaldehyde (H_2CO), while the long wavelength absorption has been assigned to the C-C stretching mode of aromatic structures. From an analysis of the 6.85 μm band, we conclude that this band is composed of two components: a volatile component centered near 6.75 μm and a more refractory component at 6.95 μm. From a comparison with various temperature tracers of the thermal history of interstellar ices, we conclude that the two 6.85 μm components are related through thermal processing. We explore several possible carriers of the 6.85 absorption band, but no satisfactory identification can be made at present. Finally, we discuss the possible implications for the origin and evolution of interstellar ices that arise from these new results
β-Alanine Supplementation Has No Effect on Rowing Performance in College Age Athletes
Please view abstract in the attached PDF file
- …
