1,636 research outputs found
Phase transitions in soft-committee machines
Equilibrium statistical physics is applied to layered neural networks with
differentiable activation functions. A first analysis of off-line learning in
soft-committee machines with a finite number (K) of hidden units learning a
perfectly matching rule is performed. Our results are exact in the limit of
high training temperatures. For K=2 we find a second order phase transition
from unspecialized to specialized student configurations at a critical size P
of the training set, whereas for K > 2 the transition is first order. Monte
Carlo simulations indicate that our results are also valid for moderately low
temperatures qualitatively. The limit K to infinity can be performed
analytically, the transition occurs after presenting on the order of N K
examples. However, an unspecialized metastable state persists up to P= O (N
K^2).Comment: 8 pages, 4 figure
Modeling and Simulation of 3D EMF Processes
A recent interest in potential industrial applications of electromagnetic forming processes has inspired a demand for adequate simulation tools. Aiming at the virtual design of industrial applications, the purpose of this work is to develop algorithmic formulations particularly suitable to reduce the enormous computational cost inherent to 3D simulations. These formulations comprise a carefully chosen discretization, highly accurate methods for data transfer between electromagnetic and mechanical subsystems, an efficient solid shell formulation, and a termination criterion for the electromagnetic field computation. As a result the simulation time is reduced by about one order of magnitude
Automated quantification of the impact of the wood-decay fungus Physisporinus vitreus on the cell wall structure of Norway spruce by tomographic microscopy
The visualization and the quantification of microscopic decay patterns are important for the study of the impact of wood-decay fungi in general, as well as for wood-decay fungi and microorganisms with possible applications in biotechnology. In the present work, a method was developed for the automated localization and quantification of microscopic cell wall elements (CWE) of Norway spruce wood such as bordered pits, intrinsic defects, hyphae or alterations induced by white-rot fungus Physisporinus vitreus using high-resolution X-ray computed tomographic microscopy. In addition to classical destructive wood anatomical methods such as light or laser scanning microscopy, this method allows for the first time to compute the properties (e.g., area, orientation and size distribution) of CWE of the tracheids in a sample. This is essential for modeling the influence of microscopic CWE on macroscopic properties such as wood strength and permeabilit
Multilayer neural networks with extensively many hidden units
The information processing abilities of a multilayer neural network with a
number of hidden units scaling as the input dimension are studied using
statistical mechanics methods. The mapping from the input layer to the hidden
units is performed by general symmetric Boolean functions whereas the hidden
layer is connected to the output by either discrete or continuous couplings.
Introducing an overlap in the space of Boolean functions as order parameter the
storage capacity if found to scale with the logarithm of the number of
implementable Boolean functions. The generalization behaviour is smooth for
continuous couplings and shows a discontinuous transition to perfect
generalization for discrete ones.Comment: 4 pages, 2 figure
QCD-based description of one-particle inclusive B decays
We discuss one-particle inclusive B decays in the limit of heavy b and c
quarks. Using the large-N_C limit we factorize the non-leptonic matrix
elements, and we employ a short distance expansion. Modeling the remaining
nonperturbative matrix elements we obtain predictions for various decay
channels and compare them with existing data.Comment: LaTeX, 22 pages, 6 figures (eps); analytical and numerical results
unchanged, misrepresentation of experimental data in Fig. 5 corrected, final
published versio
Retarded Learning: Rigorous Results from Statistical Mechanics
We study learning of probability distributions characterized by an unknown
symmetry direction. Based on an entropic performance measure and the
variational method of statistical mechanics we develop exact upper and lower
bounds on the scaled critical number of examples below which learning of the
direction is impossible. The asymptotic tightness of the bounds suggests an
asymptotically optimal method for learning nonsmooth distributions.Comment: 8 pages, 1 figur
Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision
Precision phase readout of optical beat note signals is one of the core
techniques required for intersatellite laser interferometry. Future space based
gravitational wave detectors like eLISA require such a readout over a wide
range of MHz frequencies, due to orbit induced Doppler shifts, with a precision
in the order of at frequencies between
and . In this paper, we present phase
readout systems, so-called phasemeters, that are able to achieve such
precisions and we discuss various means that have been employed to reduce noise
in the analogue circuit domain and during digitisation. We also discuss the
influence of some non-linear noise sources in the analogue domain of such
phasemeters. And finally, we present the performance that was achieved during
testing of the elegant breadboard model of the LISA phasemeter, that was
developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201
Financing Climate-Resilient Infrastructure: A Political-Economy Framework
Urban infrastructure investment is needed for both, mitigation of climate risks and improved urban resiliency. Financing them requires the translation of those benefits into measurable returns on investment in the context of emerging risks that capital markets can understand and appreciate. This paper develops a generic framework to identify what are the necessary and sufficient factors to economically favor climate-change resilient infrastructure in private investment decisions. We specifically demonstrate that carbon pricing alone will not generate the needed will, because market prices at present systematically fail to account for climate change risks such as the costs of stranded assets and the national and local co-benefits of investments in climate resiliency. Carbon pricing is necessary, but not sufficient for an enhanced private financing of climate-resilient infrastructure. The Paris Agreement and other supra-local policies and actors including city networks can concretely help to generate the sufficient social and political will for investments into climate change mitigation and resiliency at the city level
Context Dependent Neuroprotective Properties of Prion Protein (Prp)
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure—independent of infectious prion conformation—to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-β, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer’s disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP’s neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson’s disease or tauopathy. Deletion of PrP in one of two Huntington’s disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington’s motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.Ellison Medical FoundationWhitaker Health Sciences Fund Fellowshi
Filaggrin-null mutations are associated with increased maturation markers on Langerhans cells
Background Mutations in the gene encoding filaggrin (FLG), an epidermal structural protein, are the strongest risk factor identified for the development of atopic dermatitis (AD). Up to 50% of patients with moderate-to-severe AD in European populations have FLG-null alleles compared with a general population frequency of 7% to 10%. Objective This study aimed to investigate the relationship between FLG-null mutations and epidermal antigen-presenting cell (APC) maturation in subjects with and without AD. Additionally, we investigated whether the cis isomer of urocanic acid (UCA), a filaggrin breakdown product, exerts immunomodulatory effects on dendritic cells. Methods Epidermal APCs from nonlesional skin were assessed by using flow cytometry (n = 27) and confocal microscopy (n = 16). Monocyte-derived dendritic cells from healthy volunteers were used to assess the effects of cis- and trans-UCA on dendritic cell phenotype by using flow cytometry (n = 11). Results Epidermal APCs from FLG-null subjects had increased CD11c expression. Confocal microscopy confirmed this and additionally revealed an increased number of epidermal CD83+ Langerhans cells in FLG-null subjects. In vitro differentiation in the presence of cis-UCA significantly reduced costimulatory molecule expression on monocyte-derived dendritic cells from healthy volunteers and increased their ability to induce a regulatory T-cell phenotype in mixed lymphocyte reactions. Conclusions We show that subjects with FLG-null mutations have more mature Langerhans cells in nonlesional skin irrespective of whether they have AD. We also demonstrate that cis-UCA reduces maturation of dendritic cells and increases their capacity to induce regulatory T cells, suggesting a novel link between filaggrin deficiency and immune dysregulation
- …
