199 research outputs found
Determination of step--edge barriers to interlayer transport from surface morphology during the initial stages of homoepitaxial growth
We use analytic formulae obtained from a simple model of crystal growth by
molecular--beam epitaxy to determine step--edge barriers to interlayer
transport. The method is based on information about the surface morphology at
the onset of nucleation on top of first--layer islands in the submonolayer
coverage regime of homoepitaxial growth. The formulae are tested using kinetic
Monte Carlo simulations of a solid--on--solid model and applied to estimate
step--edge barriers from scanning--tunneling microscopy data on initial stages
of Fe(001), Pt(111), and Ag(111) homoepitaxy.Comment: 4 pages, a Postscript file, uuencoded and compressed. Physical Review
B, Rapid Communications, in press
Island Density in Homoepitaxial Growth:Improved Monte Carlo Results
We reexamine the density of two dimensional islands in the submonolayer
regime of a homoepitaxially growing surface using the coarse grained Monte
Carlo simulation with random sequential updating rather than parallel updating.
It turns out that the power law dependence of the density of islands on the
deposition rate agrees much better with the theoretical prediction than
previous data obtained by other methods if random sequential instead of
parallel updating is used.Comment: Latex with 2 PS figure file
Changing shapes in the nanoworld
What are the mechanisms leading to the shape relaxation of three dimensional
crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the
usual theories of equilibration, via atomic surface diffusion driven by
curvature, are verified only at high temperatures. Below the roughening
temperature, the relaxation is much slower, kinetics being governed by the
nucleation of a critical germ on a facet. We show that the energy barrier for
this step linearly increases with the size of the crystallite, leading to an
exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
The effects of graded motor imagery and its components on chronic pain: A systematic review and meta-analysis
This is the post-print version of the final paper published in The Journal of Pain. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 The American Pain Society.Graded motor imagery (GMI) is becoming increasingly used in the treatment of chronic pain conditions. The objective of this systematic review was to synthesize all evidence concerning the effects of GMI and its constituent components on chronic pain. Systematic searches were conducted in 10 electronic databases. All randomized controlled trials (RCTs) of GMI, left/right judgment training, motor imagery, and mirror therapy used as a treatment for chronic pain were included. Methodological quality was assessed using the Cochrane risk of bias tool. Six RCTs met our inclusion criteria, and the methodological quality was generally low. No effect was seen for left/right judgment training, and conflicting results were found for motor imagery used as stand-alone techniques, but positive effects were observed for both mirror therapy and GMI. A meta-analysis of GMI versus usual physiotherapy care favored GMI in reducing pain (2 studies, n = 63; effect size, 1.06 [95% confidence interval, .41, 1.71]; heterogeneity, I2 = 15%). Our results suggest that GMI and mirror therapy alone may be effective, although this conclusion is based on limited evidence. Further rigorous studies are needed to investigate the effects of GMI and its components on a wider chronic pain population.NHMR
Lattice Effects in Crystal Evaporation
We study the dynamics of a stepped crystal surface during evaporation, using
the classical model of Burton, Cabrera and Frank, in which the dynamics of the
surface is represented as a motion of parallel, monoatomic steps. The validity
of the continuum approximation treated by Frank is checked against numerical
calculations and simple, qualitative arguments. The continuum approximation is
found to suffer from limitations related, in particular, to the existence of
angular points. These limitations are often related to an adatom detachment
rate of adatoms which is higher on the lower side of each step than on the
upper side ("Schwoebel effect").Comment: DRFMC/SPSMS/MDN, Centre d'Etudes Nucleaires de Grenoble, 25 pages,
LaTex, revtex style. 8 Figures, available upon request, report# UBFF30119
Ratchet Effect in Surface Electromigration: Smoothing Surfaces by an ac Field
We demonstrate that for surfaces that have a nonzero Schwoebel barrier the
application of an ac field parallel to the surface induces a net electro-
migration current that points in the descending step direction. The magnitude
of the current is calculated analytically and compared with Monte Carlo
simulations. Since a downhill current smoothes the surface, our results imply
that the application of ac fields can aid the smoothing process during
annealing and can slow or eliminate the Schwoebel-barrier-induced mound
formation during growth.Comment: 4 pages, LaTeX, 4 ps figure
Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations
We present a comprehensive analysis of a linear growth model, which combines
the characteristic features of the Edwards--Wilkinson and noisy Mullins
equations. This model can be derived from microscopics and it describes the
relaxation and growth of surfaces under conditions where the nonlinearities can
be neglected. We calculate in detail the surface width and various correlation
functions characterizing the model. In particular, we study the crossover
scaling of these functions between the two limits described by the combined
equation. Also, we study the effect of colored and conserved noise on the
growth exponents, and the effect of different initial conditions. The
contribution of a rough substrate to the surface width is shown to decay
universally as , where is
the time--dependent correlation length associated with the growth process,
is the initial roughness and the correlation length of the
substrate roughness, and is the surface dimensionality. As a second
application, we compute the large distance asymptotics of the height
correlation function and show that it differs qualitatively from the functional
forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in
Phys. Rev.
Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions
The hopping motion of lattice gases through potentials without
mirror-reflection symmetry is investigated under various bias conditions. The
model of 2 particles on a ring with 4 sites is solved explicitly; the resulting
current in a sawtooth potential is discussed. The current of lattice gases in
extended systems consisting of periodic repetitions of segments with sawtooth
potentials is studied for different concentrations and values of the bias.
Rectification effects are observed, similar to the single-particle case. A
mean-field approximation for the current in the case of strong bias acting
against the highest barriers in the system is made and compared with numerical
simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.
Numerical test of the damping time of layer-by-layer growth on stochastic models
We perform Monte Carlo simulations on stochastic models such as the
Wolf-Villain (WV) model and the Family model in a modified version to measure
mean separation between islands in submonolayer regime and damping time
of layer-by-layer growth oscillations on one dimension. The
stochastic models are modified, allowing diffusion within interval upon
deposited. It is found numerically that the mean separation and the damping
time depend on the diffusion interval , leading to that the damping time is
related to the mean separation as for the WV model
and for the Family model. The numerical results are in
excellent agreement with recent theoretical predictions.Comment: 4 pages, source LaTeX file and 5 PS figure
A quantitative theory of current-induced step bunching on Si(111)
We use a one-dimensional step model to study quantitatively the growth of
step bunches on Si(111) surfaces induced by a direct heating current.
Parameters in the model are fixed from experimental measurements near 900 deg C
under the assumption that there is local mass transport through surface
diffusion and that step motion is limited by the attachment rate of adatoms to
step edges. The direct heating current is treated as an external driving force
acting on each adatom. Numerical calculations show both qualitative and
quantitative agreement with experiment. A force in the step down direction will
destabilize the uniform step train towards step bunching. The average size of
the step bunches grows with electromigration time as t^beta, with beta = 0.5,
in agreement with experiment and with an analytical treatment of the steady
states. The model is extended to include the effect of direct hopping of
adatoms between different terraces. Monte-Carlo simulations of a solid-on-solid
model, using physically motivated assumptions about the dynamics of surface
diffusion and attachment at step edges, are carried out to study two
dimensional features that are left out of the present step model and to test
its validity. These simulations give much better agreement with experiment than
previous work. We find a new step bending instability when the driving force is
along the step edge direction. This instability causes the formation of step
bunches and antisteps that is similar to that observed in experiment.Comment: 11 pages, 7 figure
- …
