2,879 research outputs found

    Modelling response time contrasts in superconducting nanowire single photon detectors

    Full text link
    Superconducting Nanowire Single Photon Detector (SNSPD) emerges as a potential candidate in the multiple fields requiring sensitive and fast photodetection. While nanowires of low temperature superconducting detectors are mature with commercial solutions, other material options with higher transition temperature and faster responses are currently being explored. Towards this goal, we develop a generalized numerical model that incorporates the thermodynamic properties of the superconducting material and identifies the minimum resolvable photon count for a given bias and device parameters. A phase diagram of detection and latching phases with the minimum number of photons as a function of biasing current and biasing temperature for each material system is presented. We show using the developed model that while low temperature superconducting (LTS) nanowires are more sensitive to the incident photon at different wavelengths, the ultimate limit of a single photon can be achieved using high temperature superconducting (HTS) material such as YBa2Cu3O7-{\delta}, albeit at stringent biasing conditions. On the contrary, ultrafast response time with three orders of magnitude smaller response times can be achieved in select HTS materials making it an appealing for several practical applications

    Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus

    Get PDF
    Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.National Institutes of Health (U.S.

    Galectin-9/TIM-3 Interaction Regulates Virus-Specific Primary and Memory CD8+ T Cell Response

    Get PDF
    In this communication, we demonstrate that galectin (Gal)-9 acts to constrain CD8+ T cell immunity to Herpes Simplex Virus (HSV) infection. In support of this, we show that animals unable to produce Gal-9, because of gene knockout, develop acute and memory responses to HSV that are of greater magnitude and better quality than those that occur in normal infected animals. Interestingly, infusion of normal infected mice with α-lactose, the sugar that binds to the carbohydrate-binding domain of Gal-9 limiting its engagement of T cell immunoglobulin and mucin (TIM-3) receptors, also caused a more elevated and higher quality CD8+ T cell response to HSV particularly in the acute phase. Such sugar treated infected mice also had expanded populations of effector as well as memory CD8+ T cells. The increased effector T cell responses led to significantly more efficient virus control. The mechanisms responsible for the outcome of the Gal-9/TIM-3 interaction in normal infected mice involved direct inhibitory effects on TIM-3+ CD8+ T effector cells as well as the promotion of Foxp3+ regulatory T cell activity. Our results indicate that manipulating galectin signals, as can be achieved using appropriate sugars, may represent a convenient and inexpensive approach to enhance acute and memory responses to a virus infection

    Controlling Viral Immuno-Inflammatory Lesions by Modulating Aryl Hydrocarbon Receptor Signaling

    Get PDF
    Ocular herpes simplex virus infection can cause a blinding CD4+ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK). A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin), a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3- CD4+ T cells but had no effect on Foxp3+ CD4+ Tregs. TCDD also decreased the proliferation of Foxp3- CD4+ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4+ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions

    Computerized electrocardiogram data transformation enables effective algorithmic differentiation of wide QRS complex tachycardias

    Get PDF
    BACKGROUND: Accurate automated wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) can be accomplished using calculations derived from computerized electrocardiogram (ECG) data of paired WCT and baseline ECGs. OBJECTIVE: Develop and trial novel WCT differentiation approaches for patients with and without a corresponding baseline ECG. METHODS: We developed and trialed WCT differentiation models comprised of novel and previously described parameters derived from WCT and baseline ECG data. In Part 1, a derivation cohort was used to evaluate five different classification models: logistic regression (LR), artificial neural network (ANN), Random Forests [RF], support vector machine (SVM), and ensemble learning (EL). In Part 2, a separate validation cohort was used to prospectively evaluate the performance of two LR models using parameters generated from the WCT ECG alone (Solo Model) and paired WCT and baseline ECGs (Paired Model). RESULTS: Of the 421 patients of the derivation cohort (Part 1), a favorable area under the receiver operating characteristic curve (AUC) by all modeling subtypes: LR (0.96), ANN (0.96), RF (0.96), SVM (0.96), and EL (0.97). Of the 235 patients of the validation cohort (Part 2), the Solo Model and Paired Model achieved a favorable AUC for 103 patients with (Solo Model 0.87; Paired Model 0.95) and 132 patients without (Solo Model 0.84; Paired Model 0.95) a corroborating electrophysiology procedure or intracardiac device recording. CONCLUSION: Accurate WCT differentiation may be accomplished using computerized data of (i) the WCT ECG alone and (ii) paired WCT and baseline ECGs

    The Association between ATM IVS 22-77 T>C and Cancer Risk: A Meta-Analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: It has become increasingly clear that ATM (ataxia-telangiectasia-mutated) safeguards genome stability, which is a cornerstone of cellular homeostasis, and ATM IVS 22-77 T>C affects the normal activity of ATM proteins. However, the association between the ATM IVS 22-77 T>C genetic variant and cancer risk is controversial. Therefore, we conducted a systematic meta-analysis to estimate the overall cancer risk associated with the polymorphism and to quantify any potential between-study heterogeneity. METHODS: A total of nine studies including 4,470 cases and 4,862 controls were analyzed for ATM IVS 22-77 T>C association with cancer risk in this meta-analysis. Heterogeneity among articles and their publication bias were also tested. RESULTS: Our results showed that no association reached the level of statistical significance in the overall risk. Interestingly, in the stratified analyses, we observed an inverse relationship in lung and breast cancer. CONCLUSION: Further functional research on the ATM mechanism should be performed to explain the inconsistent results in different cancer types

    Potential novel candidate polymorphisms identified in genome-wide association study for breast cancer susceptibility

    Get PDF
    Previous genome-wide association studies (GWAS) have shown several risk alleles to be associated with breast cancer. However, the variants identified so far contribute to only a small proportion of disease risk. The objective of our GWAS was to identify additional novel breast cancer susceptibility variants and to replicate these findings in an independent cohort. We performed a two-stage association study in a cohort of 3,064 women from Alberta, Canada. In Stage I, we interrogated 906,600 single nucleotide polymorphisms (SNPs) on Affymetrix SNP 6.0 arrays using 348 breast cancer cases and 348 controls. We used single-locus association tests to determine statistical significance for the observed differences in allele frequencies between cases and controls. In Stage II, we attempted to replicate 35 significant markers identified in Stage I in an independent study of 1,153 cases and 1,215 controls. Genotyping of Stage II samples was done using Sequenom Mass-ARRAY iPlex platform. Six loci from four different gene regions (chromosomes 4, 5, 16 and 19) showed statistically significant differences between cases and controls in both Stage I and Stage II testing, and also in joint analysis. The identified variants were from EDNRA, ROPN1L, C16orf61 and ZNF577 gene regions. The presented joint analyses from the two-stage study design were not significant after genome-wide correction. The SNPs identified in this study may serve as potential candidate loci for breast cancer risk in a further replication study in Stage III from Alberta population or independent validation in Caucasian cohorts elsewhere

    Benzyl Isothiocyanate Causes FoxO1-Mediated Autophagic Death in Human Breast Cancer Cells

    Get PDF
    Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy
    corecore