2,841 research outputs found

    Quantum Speed Limits across the Quantum-to-Classical Transition

    Get PDF
    Quantum speed limits set an upper bound to the rate at which a quantum system can evolve. Adopting a phase-space approach, we explore quantum speed limits across the quantum-to-classical transition and identify equivalent bounds in the classical world. As a result, and contrary to common belief, we show that speed limits exist for both quantum and classical systems. As in the quantum domain, classical speed limits are set by a given norm of the generator of time evolution.National Institute of General Medical Sciences (U.S.) (Grant R25GM076321

    Cost-effectiveness analysis of the New South Wales adult drug court program

    Full text link
    In New South Wales, Australia, a cost-effectiveness evaluation was conducted of an adult drug court (ADC) program as an alternative to jail for criminal offenders addicted to illicit drugs. This article describes the program, the cost-effectiveness analysis, and the results. The results of this study reveal that, for the 23-month period of the evaluation, the ADC was as cost-effective as were conventional sanctions in delaying the time to the first offense and more cost-effective in reducing the frequency of offending for those outcome measures selected. Although the evaluation was conducted using the traditional steps of a cost-effectiveness analysis, because of the complexity of the program and data limitations it was not always possible to adhere to textbook procedures. As such, each step involved in undertaking the cost-effectiveness analysis is discussed, highlighting the key issues faced in the evaluation. © 2004 Sage Publications

    Stringy K-theory and the Chern character

    Full text link
    For a finite group G acting on a smooth projective variety X, we construct two new G-equivariant rings: first the stringy K-theory of X, and second the stringy cohomology of X. For a smooth Deligne-Mumford stack Y we also construct a new ring called the full orbifold K-theory of Y. For a global quotient Y=[X/G], the ring of G-invariants of the stringy K-theory of X is a subalgebra of the full orbifold K-theory of the the stack Y and is linearly isomorphic to the ``orbifold K-theory'' of Adem-Ruan (and hence Atiyah-Segal), but carries a different, ``quantum,'' product, which respects the natural group grading. We prove there is a ring isomorphism, the stringy Chern character, from stringy K-theory to stringy cohomology, and a ring homomorphism from full orbifold K-theory to Chen-Ruan orbifold cohomology. These Chern characters satisfy Grothendieck-Riemann-Roch for etale maps. We prove that stringy cohomology is isomorphic to Fantechi and Goettsche's construction. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results simplify the definitions of Fantechi-Goettsche's ring, of Chen-Ruan's orbifold cohomology, and of Abramovich-Graber-Vistoli's orbifold Chow. We conclude by showing that a K-theoretic version of Ruan's Hyper-Kaehler Resolution Conjecture holds for symmetric products. Our results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.Comment: Exposition improved and additional details provided. To appear in Inventiones Mathematica

    Sub-percent Photometry: Faint DA White Dwarf Spectophotometric Standards for Astrophysical Observatories

    Get PDF
    We have established a network of 19 faint (16.5 mag <V<< V < 19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope (HSTHST) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope (WFIRSTWFIRST).Comment: 46 pages, 23 figures, 8 tables, accepted for publication in ApJ

    Tumour-associated and non-tumour-associated microbiota in colorectal cancer

    Get PDF
    Objective: A signature that unifies the colorectal cancer (CRC) microbiota across multiple studies has not been identified. In addition to methodological variance, heterogeneity may be caused by both microbial and host response differences, which was addressed in this study. Design: We prospectively studied the colonic microbiota and the expression of specific host response genes using faecal and mucosal samples (‘ON’ and ‘OFF’ the tumour, proximal and distal) from 59 patients undergoing surgery for CRC, 21 individuals with polyps and 56 healthy controls. Microbiota composition was determined by 16S rRNA amplicon sequencing; expression of host genes involved in CRC progression and immune response was quantified by real-time quantitative PCR. Results: The microbiota of patients with CRC differed from that of controls, but alterations were not restricted to the cancerous tissue. Differences between distal and proximal cancers were detected and faecal microbiota only partially reflected mucosal microbiota in CRC. Patients with CRC can be stratified based on higher level structures of mucosal-associated bacterial co-abundance groups (CAGs) that resemble the previously formulated concept of enterotypes. Of these, Bacteroidetes Cluster 1 and Firmicutes Cluster 1 were in decreased abundance in CRC mucosa, whereas Bacteroidetes Cluster 2, Firmicutes Cluster 2, Pathogen Cluster and Prevotella Cluster showed increased abundance in CRC mucosa. CRC-associated CAGs were differentially correlated with the expression of host immunoinflammatory response genes. Conclusions: CRC-associated microbiota profiles differ from those in healthy subjects and are linked with distinct mucosal gene-expression profiles. Compositional alterations in the microbiota are not restricted to cancerous tissue and differ between distal and proximal cancers

    Maximal variance reduction for stochastic propagators with applications to the static quark spectrum

    Get PDF
    We study a new method -- maximal variance reduction -- for reducing the variance of stochastic estimators for quark propagators. We find that while this method is comparable to usual iterative inversion for light-light mesons, a considerable improvement is achieved for systems containing at least one infinitely heavy quark. Such systems are needed for heavy quark effective theory. As an illustration of the effectiveness of the method we present results for the masses of the ground state and excited states of Qˉq\bar{Q}q mesons and Qˉqq\bar{Q}qq baryons. We compare these results with the experimental spectra involving bb quarks.Comment: 31 pages with 7 postscript file

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain
    corecore